Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Hypertension ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041216

RESUMEN

BACKGROUND: Vascular risk factors, particularly hypertension, are important contributors to accelerated brain aging. We sought to quantify vascular risk factor risks over adulthood and assess the empirical evidence for risk thresholds. METHODS: We used SBP (systolic blood pressure) and diastolic blood pressure, total cholesterol, fasting blood glucose, and body mass index measurements collected from participants in the CARDIA study (Coronary Artery Risk Development in Young Adults) at 2- to 5-year intervals through year 30. The Montreal Cognitive Assessment and domain-specific cognitive tests were performed at year 30. White matter hyperintensity volume was measured by magnetic resonance imaging. We used a 2-step method to fit longitudinal vascular risk factor exposures to optimized spline functions with mixed-effects models, then used the participant-specific random effects that characterized individual exposures over time in cross-sectional models adjusted for sex, race, age, and education to study effects on midlife brain health. RESULTS: Change in SBP up to 33 years of age was negatively associated with Montreal Cognitive Assessment scores (-0.29 Montreal Cognitive Assessment Z score per mm Hg/y change [95% CI, -0.49 to -0.09]; P=0.005), with similar effects for SBP changes from 33 to 49 years of age (-0.08 [95% CI, -0.16 to 0.01]; P=0.08). We observed comparable, significant associations between SBP exposure during those ages, midlife performance on specific cognitive domains, and volume of white matter hyperintensity (all P<0.05). SBP ≤111 mm Hg was the estimated threshold below which no harmful association with midlife cognitive performance was identified. CONCLUSIONS: SBP in early adulthood is the vascular risk factor most strongly associated with midlife cognitive performance and white matter hyperintensity burden, with SBP 111 mm Hg suggested as a harm threshold.

2.
Radiology ; 311(3): e241222, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860895
3.
Cell Rep Med ; 5(5): 101529, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703765

RESUMEN

The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabeza , Neoplasias , Humanos , Cabeza/anatomía & histología , Neoplasias/genética , Neoplasias/patología , Femenino , Masculino , Polimorfismo de Nucleótido Simple/genética , Variación Genética , Tamaño de los Órganos/genética , Transducción de Señal/genética , Adulto , Predisposición Genética a la Enfermedad
4.
J Magn Reson Imaging ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490945

RESUMEN

BACKGROUND: Left atrial (LA) myopathy is thought to be associated with silent brain infarctions (SBI) through changes in blood flow hemodynamics leading to thrombogenesis. 4D-flow MRI enables in-vivo hemodynamic quantification in the left atrium (LA) and LA appendage (LAA). PURPOSE: To determine whether LA and LAA hemodynamic and volumetric parameters are associated with SBI. STUDY TYPE: Prospective observational study. POPULATION: A single-site cohort of 125 Participants of the multiethnic study of atherosclerosis (MESA), mean age: 72.3 ± 7.2 years, 56 men. FIELD STRENGTH/SEQUENCE: 1.5T. Cardiac MRI: Cine balanced steady state free precession (bSSFP) and 4D-flow sequences. Brain MRI: T1- and T2-weighted SE and FLAIR. ASSESSMENT: Presence of SBI was determined from brain MRI by neuroradiologists according to routine diagnostic criteria in all participants without a history of stroke based on the MESA database. Minimum and maximum LA volumes and ejection fraction were calculated from bSSFP data. Blood stasis (% of voxels <10 cm/sec) and peak velocity (cm/sec) in the LA and LAA were assessed by a radiologist using an established 4D-flow workflow. STATISTICAL TESTS: Student's t test, Mann-Whitney U test, one-way ANOVA, chi-square test. Multivariable stepwise logistic regression with automatic forward and backward selection. Significance level P < 0.05. RESULTS: 26 (20.8%) had at least one SBI. After Bonferroni correction, participants with SBI were significantly older and had significantly lower peak velocities in the LAA. In multivariable analyses, age (per 10-years) (odds ratio (OR) = 1.99 (95% confidence interval (CI): 1.30-3.04)) and LAA peak velocity (per cm/sec) (OR = 0.87 (95% CI: 0.81-0.93)) were significantly associated with SBI. CONCLUSION: Older age and lower LAA peak velocity were associated with SBI in multivariable analyses whereas volumetric-based measures from cardiac MRI or cardiovascular risk factors were not. Cardiac 4D-flow MRI showed potential to serve as a novel imaging marker for SBI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

5.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353984

RESUMEN

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Asunto(s)
Envejecimiento , Encéfalo , Humanos , Anciano , Femenino , Masculino , Persona de Mediana Edad , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Envejecimiento/genética , Envejecimiento/fisiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios de Cohortes , Aprendizaje Profundo
6.
Ann Neurol ; 95(5): 866-875, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362733

RESUMEN

OBJECTIVE: Subclinical brain infarcts (SBI) increase the risk for stroke and dementia, but whether they should be considered equivalent to symptomatic stroke when determining blood pressure targets remains unclear. We tested whether intensive systolic blood pressure (SBP) treatment reduced the risk of new SBI or stroke and determined the association between SBI and cognitive impairment. METHODS: In this secondary analysis of SPRINT (Systolic Pressure Intervention Trial), participants ≥50 years old, with SBP 130-180mmHg and elevated cardiovascular risk but without known clinical stroke, dementia, or diabetes, were randomized to intensive (<120mmHg) or standard (<140mmHg) SBP treatment. Brain magnetic resonance images collected at baseline and follow-up were read for SBI. The occurrence of mild cognitive impairment (MCI) or probable dementia (PD) was evaluated. RESULTS: For 667 participants at baseline, SBI were identified in 75 (11%). At median 3.9 years follow-up, 12 of 457 had new SBI on magnetic resonance imaging (5 intensive, 7 standard), whereas 8 had clinical stroke (4 per group). Baseline SBI (subhazard ratio [sHR] = 3.90; 95% CI 1.49 to 10.24; p = 0.006), but not treatment group, was associated with new SBI or stroke. For participants with baseline SBI, intensive treatment reduced their risk for recurrent SBI or stroke (sHR = 0.050; 95% CI 0.0031 to 0.79; p = 0.033). Baseline SBI also increased risk for MCI or PD during follow-up (sHR = 2.38; 95% CI 1.23 to 4.61; p = 0.010). INTERPRETATION: New cerebral ischemic events were infrequent, but intensive treatment mitigated the increased risk for participants with baseline SBI, indicating primary prevention SBP goals are still appropriate when SBI are present. ANN NEUROL 2024;95:866-875.


Asunto(s)
Antihipertensivos , Infarto Encefálico , Disfunción Cognitiva , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Antihipertensivos/uso terapéutico , Infarto Encefálico/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética , Hipertensión/complicaciones , Presión Sanguínea/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Demencia
7.
Alzheimers Dement ; 20(2): 1397-1405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009395

RESUMEN

INTRODUCTION: Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS: In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS: In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION: HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Anciano , Frecuencia Cardíaca , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/patología
8.
Nutr Healthy Aging ; 8(1): 109-121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38013773

RESUMEN

BACKGROUND: The Mediterranean diet (MedDiet) has been linked with better cognitive function and brain integrity. OBJECTIVE: To examine the association of modified Mediterranean diet (mMedDiet) scores from early through middle adulthood in relation to volumetric and microstructural midlife MRI brain measures. Assess the association of mMedDiet and brain measures with four cognitive domains. If variables are correlated, determine if brain measures mediate the relationship between mMedDiet and cognition. METHODS: 618 participants (mean age 25.4±3.5 at year 0) of the Coronary Artery Risk Development in Young Adults (CARDIA) study were included. Cumulative average mMedDiet scores were calculated by averaging scores from years 0, 7, and 20. MRI scans were obtained at years 25 and 30. General linear models were used to examine the association between mMedDiet and brain measures. RESULTS: Higher cumulative average mMedDiet scores were associated with better microstructural white matter (WM) integrity measured by fractional anisotropy (FA) at years 25 and 30 (all ptrend <0.05). Higher mMedDiet scores at year 7 were associated with higher WM FA at year 25 (ß= 0.003, ptrend = 0.03). Higher mMedDiet scores at year 20 associated with higher WM FA at years 25 (ß= 0.0005, ptrend = 0.002) and 30 (ß= 0.0003, ptrend = 0.02). mMedDiet scores were not associated with brain volumes. Higher mMedDiet scores and WM FA were both correlated with better executive function, processing speed, and global cognition (all ptrend <0.05). WM FA did not mediate the association between mMedDiet scores and cognition. CONCLUSIONS: mMedDiet scores may be associated with microstructural WM integrity at midlife.

9.
BMC Neurol ; 23(1): 394, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907860

RESUMEN

BACKGROUND: Numerous upper airway anatomy characteristics are risk factors for sleep apnea, which affects 26% of older Americans, and more severe sleep apnea is associated with cognitive impairment. This study explores the pathophysiology and links between upper airway anatomy, sleep, and cognition. METHODS: Participants in the Multi-Ethnic Study of Atherosclerosis underwent an upper airway MRI, polysomnography to assess sleep measures including the apnea-hypopnea index (AHI) and completed the Cognitive Abilities Screening Instrument (CASI). Two model selection techniques selected from among 67 upper airway measures those that are most strongly associated with CASI score. The associations of selected upper airway measures with AHI, AHI with CASI score, and selected upper airway anatomy measures with CASI score, both alone and after adjustment for AHI, were assessed using linear regression. RESULTS: Soft palate volume, maxillary divergence, and upper facial height were significantly positively associated with higher CASI score, indicating better cognition. The coefficients were small, with a 1 standard deviation (SD) increase in these variables being associated with a 0.83, 0.75, and 0.70 point higher CASI score, respectively. Additional adjustment for AHI very slightly attenuated these associations. Larger soft palate volume was significantly associated with higher AHI (15% higher AHI (95% CI 2%,28%) per SD). Higher AHI was marginally associated with higher CASI score (0.43 (95% CI 0.01,0.85) per AHI doubling). CONCLUSIONS: Three upper airway measures were weakly but significantly associated with higher global cognitive test performance. Sleep apnea did not appear to be the mechanism through which these upper airway and cognition associations were acting. Further research on the selected upper airway measures is recommended.


Asunto(s)
Aterosclerosis , Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Humanos , Anciano , Síndromes de la Apnea del Sueño/complicaciones , Polisomnografía/efectos adversos , Factores de Riesgo , Aterosclerosis/complicaciones
10.
Alzheimers Dement ; 19(9): 4139-4149, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289978

RESUMEN

INTRODUCTION: Little is known about the epidemiology of brain microbleeds in racially/ethnically diverse populations. METHODS: In the Multi-Ethnic Study of Atherosclerosis, brain microbleeds were identified from 3T magnetic resonance imaging susceptibility-weighted imaging sequences using deep learning models followed by radiologist review. RESULTS: Among 1016 participants without prior stroke (25% Black, 15% Chinese, 19% Hispanic, 41% White, mean age 72), microbleed prevalence was 20% at age 60 to 64.9 and 45% at ≥85 years. Deep microbleeds were associated with older age, hypertension, higher body mass index, and atrial fibrillation, and lobar microbleeds with male sex and atrial fibrillation. Overall, microbleeds were associated with greater white matter hyperintensity volume and lower total white matter fractional anisotropy. DISCUSSION: Results suggest differing associations for lobar versus deep locations. Sensitive microbleed quantification will facilitate future longitudinal studies of their potential role as an early indicator of vascular pathology.


Asunto(s)
Fibrilación Atrial , Hemorragia Cerebral , Humanos , Masculino , Anciano , Persona de Mediana Edad , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/epidemiología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Factores de Riesgo , Cognición
11.
JAMA Netw Open ; 6(6): e2316182, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261829

RESUMEN

Importance: Little is known about structural brain changes in type 1 diabetes (T1D) and whether there are early manifestations of a neurodegenerative condition like Alzheimer disease (AD) or evidence of premature brain aging. Objective: To evaluate neuroimaging markers of brain age and AD-like atrophy in participants with T1D in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, identify which brain regions are associated with the greatest changes in patients with T1D, and assess the association between cognition and brain aging indices. Design, Setting, and Participants: This cohort study leveraged data collected during the combined DCCT (randomized clinical trial, 1983-1993) and EDIC (observational study, 1994 to present) studies at 27 clinical centers in the US and Canada. A total of 416 eligible EDIC participants and 99 demographically similar adults without diabetes were enrolled in the magnetic resonance imaging (MRI) ancillary study, which reports cross-sectional data collected in 2018 to 2019 and relates it to factors measured longitudinally in DCCT/EDIC. Data analyses were performed between July 2020 and April 2022. Exposure: T1D diagnosis. Main Outcomes and Measures: Psychomotor and mental efficiency were evaluated using verbal fluency, digit symbol substitution test, trail making part B, and the grooved pegboard. Immediate memory scores were derived from the logical memory subtest of the Wechsler memory scale and the Wechsler digit symbol substitution test. MRI and machine learning indices were calculated to predict brain age and quantify AD-like atrophy. Results: This study included 416 EDIC participants with a median (range) age of 60 (44-74) years (87 of 416 [21%] were older than 65 years) and a median (range) diabetes duration of 37 (30-51) years. EDIC participants had consistently higher brain age values compared with controls without diabetes, indicative of approximately 6 additional years of brain aging (EDIC participants: ß, 6.16; SE, 0.71; control participants: ß, 1.04; SE, 0.04; P < .001). In contrast, AD regional atrophy was comparable between the 2 groups. Regions with atrophy in EDIC participants vs controls were observed mainly in the bilateral thalamus and putamen. Greater brain age was associated with lower psychomotor and mental efficiency among EDIC participants (ß, -0.04; SE, 0.01; P < .001), but not among controls. Conclusions and Relevance: The findings of this study suggest an increase in brain aging among individuals with T1D without any early signs of AD-related neurodegeneration. These increases were associated with reduced cognitive performance, but overall, the abnormal patterns seen in this sample were modest, even after a mean of 38 years with T1D.


Asunto(s)
Enfermedad de Alzheimer , Complicaciones de la Diabetes , Diabetes Mellitus Tipo 1 , Humanos , Adulto , Persona de Mediana Edad , Niño , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico por imagen , Estudios de Cohortes , Estudios Transversales , Encéfalo/diagnóstico por imagen , Enfermedad de Alzheimer/complicaciones , Envejecimiento , Atrofia
12.
Neuroimage Rep ; 3(1)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37035520

RESUMEN

Deep learning has been demonstrated effective in many neuroimaging applications. However, in many scenarios, the number of imaging sequences capturing information related to small vessel disease lesions is insufficient to support data-driven techniques. Additionally, cohort-based studies may not always have the optimal or essential imaging sequences for accurate lesion detection. Therefore, it is necessary to determine which imaging sequences are crucial for precise detection. This study introduces a deep learning framework to detect enlarged perivascular spaces (ePVS) and aims to find the optimal combination of MRI sequences for deep learning-based quantification. We implemented an effective lightweight U-Net adapted for ePVS detection and comprehensively investigated different combinations of information from SWI, FLAIR, T1-weighted (T1w), and T2-weighted (T2w) MRI sequences. The experimental results showed that T2w MRI is the most important for accurate ePVS detection, and the incorporation of SWI, FLAIR and T1w MRI in the deep neural network had minor improvements in accuracy and resulted in the highest sensitivity and precision (sensitivity =0.82, precision =0.83). The proposed method achieved comparable accuracy at a minimal time cost compared to manual reading. The proposed automated pipeline enables robust and time-efficient readings of ePVS from MR scans and demonstrates the importance of T2w MRI for ePVS detection and the potential benefits of using multimodal images. Furthermore, the model provides whole-brain maps of ePVS, enabling a better understanding of their clinical correlates compared to the clinical rating methods within only a couple of brain regions.

13.
JAMA Netw Open ; 6(4): e239196, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37093602

RESUMEN

Importance: Enlarged perivascular spaces (ePVSs) have been associated with cerebral small-vessel disease (cSVD). Although their etiology may differ based on brain location, study of ePVSs has been limited to specific brain regions; therefore, their risk factors and significance remain uncertain. Objective: Toperform a whole-brain investigation of ePVSs in a large community-based cohort. Design, Setting, and Participants: This cross-sectional study analyzed data from the Atrial Fibrillation substudy of the population-based Multi-Ethnic Study of Atherosclerosis. Demographic, vascular risk, and cardiovascular disease data were collected from September 2016 to May 2018. Brain magnetic resonance imaging was performed from March 2018 to July 2019. The reported analysis was conducted between August and October 2022. A total of 1026 participants with available brain magnetic resonance imaging data and complete information on demographic characteristics and vascular risk factors were included. Main Outcomes and Measures: Enlarged perivascular spaces were quantified using a fully automated deep learning algorithm. Quantified ePVS volumes were grouped into 6 anatomic locations: basal ganglia, thalamus, brainstem, frontoparietal, insular, and temporal regions, and were normalized for the respective regional volumes. The association of normalized regional ePVS volumes with demographic characteristics, vascular risk factors, neuroimaging indices, and prevalent cardiovascular disease was explored using generalized linear models. Results: In the 1026 participants, mean (SD) age was 72 (8) years; 541 (53%) of the participants were women. Basal ganglia ePVS volume was positively associated with age (ß = 3.59 × 10-3; 95% CI, 2.80 × 10-3 to 4.39 × 10-3), systolic blood pressure (ß = 8.35 × 10-4; 95% CI, 5.19 × 10-4 to 1.15 × 10-3), use of antihypertensives (ß = 3.29 × 10-2; 95% CI, 1.92 × 10-2 to 4.67 × 10-2), and negatively associated with Black race (ß = -3.34 × 10-2; 95% CI, -5.08 × 10-2 to -1.59 × 10-2). Thalamic ePVS volume was positively associated with age (ß = 5.57 × 10-4; 95% CI, 2.19 × 10-4 to 8.95 × 10-4) and use of antihypertensives (ß = 1.19 × 10-2; 95% CI, 6.02 × 10-3 to 1.77 × 10-2). Insular region ePVS volume was positively associated with age (ß = 1.18 × 10-3; 95% CI, 7.98 × 10-4 to 1.55 × 10-3). Brainstem ePVS volume was smaller in Black than in White participants (ß = -5.34 × 10-3; 95% CI, -8.26 × 10-3 to -2.41 × 10-3). Frontoparietal ePVS volume was positively associated with systolic blood pressure (ß = 1.14 × 10-4; 95% CI, 3.38 × 10-5 to 1.95 × 10-4) and negatively associated with age (ß = -3.38 × 10-4; 95% CI, -5.40 × 10-4 to -1.36 × 10-4). Temporal region ePVS volume was negatively associated with age (ß = -1.61 × 10-2; 95% CI, -2.14 × 10-2 to -1.09 × 10-2), as well as Chinese American (ß = -2.35 × 10-1; 95% CI, -3.83 × 10-1 to -8.74 × 10-2) and Hispanic ethnicities (ß = -1.73 × 10-1; 95% CI, -2.96 × 10-1 to -4.99 × 10-2). Conclusions and Relevance: In this cross-sectional study of ePVSs in the whole brain, increased ePVS burden in the basal ganglia and thalamus was a surrogate marker for underlying cSVD, highlighting the clinical importance of ePVSs in these locations.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Femenino , Anciano , Masculino , Antihipertensivos , Estudios Transversales , Relevancia Clínica , Encéfalo/patología , Factores de Riesgo , Enfermedades de los Pequeños Vasos Cerebrales/patología
14.
JAMA Netw Open ; 6(3): e231055, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857053

RESUMEN

Importance: Little is known about the associations of strict blood pressure (BP) control with microstructural changes in small vessel disease markers. Objective: To investigate the regional associations of intensive vs standard BP control with small vessel disease biomarkers, such as white matter lesions (WMLs), fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF). Design, Setting, and Participants: The Systolic Blood Pressure Intervention Trial (SPRINT) is a multicenter randomized clinical trial that compared intensive systolic BP (SBP) control (SBP target <120 mm Hg) vs standard control (SBP target <140 mm Hg) among participants aged 50 years or older with hypertension and without diabetes or a history of stroke. The study began randomization on November 8, 2010, and stopped July 1, 2016, with a follow-up duration of approximately 4 years. A total of 670 and 458 participants completed brain magnetic resonance imaging at baseline and follow-up, respectively, and comprise the cohort for this post hoc analysis. Statistical analyses for this post hoc analysis were performed between August 2020 and October 2022. Interventions: At baseline, 355 participants received intensive SBP treatment and 315 participants received standard SBP treatment. Main Outcomes and Measures: The main outcomes were regional changes in WMLs, FA, MD (in white matter regions of interest), and CBF (in gray matter regions of interest). Results: At baseline, 355 participants (mean [SD] age, 67.7 [8.0] years; 200 men [56.3%]) received intensive BP treatment and 315 participants (mean [SD] age, 67.0 [8.4] years; 199 men [63.2%]) received standard BP treatment. Intensive treatment was associated with smaller mean increases in WML volume compared with standard treatment (644.5 mm3 vs 1258.1 mm3). The smaller mean increases were observed specifically in the deep white matter regions of the left anterior corona radiata (intensive treatment, 30.3 mm3 [95% CI, 16.0-44.5 mm3]; standard treatment, 80.5 mm3 [95% CI, 53.8-107.2 mm3]), left tapetum (intensive treatment, 11.8 mm3 [95% CI, 4.4-19.2 mm3]; standard treatment, 27.2 mm3 [95% CI, 19.4-35.0 mm3]), left superior fronto-occipital fasciculus (intensive treatment, 3.2 mm3 [95% CI, 0.7-5.8 mm3]; standard treatment, 9.4 mm3 [95% CI, 5.5-13.4 mm3]), left posterior corona radiata (intensive treatment, 26.0 mm3 [95% CI, 12.9-39.1 mm3]; standard treatment, 52.3 mm3 [95% CI, 34.8-69.8 mm3]), left splenium of the corpus callosum (intensive treatment, 45.4 mm3 [95% CI, 25.1-65.7 mm3]; standard treatment, 83.0 mm3 [95% CI, 58.7-107.2 mm3]), left posterior thalamic radiation (intensive treatment, 53.0 mm3 [95% CI, 29.8-76.2 mm3]; standard treatment, 106.9 mm3 [95% CI, 73.4-140.3 mm3]), and right posterior thalamic radiation (intensive treatment, 49.5 mm3 [95% CI, 24.3-74.7 mm3]; standard treatment, 102.6 mm3 [95% CI, 71.0-134.2 mm3]). Conclusions and Relevance: This study suggests that intensive BP treatment, compared with standard treatment, was associated with a slower increase of WMLs, improved diffusion tensor imaging, and FA and CBF changes in several brain regions that represent vulnerable areas that may benefit from more strict BP control. Trial Registration: ClinicalTrials.gov Identifier: NCT01206062.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Hipertensión , Masculino , Humanos , Anciano , Presión Sanguínea , Imagen de Difusión Tensora , Biomarcadores
15.
Insights Imaging ; 14(1): 54, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36995467

RESUMEN

Enormous recent progress in diagnostic testing can enable more accurate diagnosis and improved clinical outcomes. Yet these tests are increasingly challenging and frustrating; the volume and diversity of results may overwhelm the diagnostic acumen of even the most dedicated and experienced clinician. Because they are gathered and processed within the "silo" of each diagnostic discipline, diagnostic data are fragmented, and the electronic health record does little to synthesize new and existing data into usable information. Therefore, despite great promise, diagnoses may still be incorrect, delayed, or never made. Integrative diagnostics represents a vision for the future, wherein diagnostic data, together with clinical data from the electronic health record, are aggregated and contextualized by informatics tools to direct clinical action. Integrative diagnostics has the potential to identify correct therapies more quickly, modify treatment when appropriate, and terminate treatment when not effective, ultimately decreasing morbidity, improving outcomes, and avoiding unnecessary costs. Radiology, laboratory medicine, and pathology already play major roles in medical diagnostics. Our specialties can increase the value of our examinations by taking a holistic approach to their selection, interpretation, and application to the patient's care pathway. We have the means and rationale to incorporate integrative diagnostics into our specialties and guide its implementation in clinical practice.

16.
J Alzheimers Dis ; 91(2): 627-635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683514

RESUMEN

BACKGROUND: Metabolic and vascular risk factors (MVRF) are associated with neurodegeneration and poor cognition. There is a need to better understand the impact of these risk factors on brain health in the decades that precede cognitive impairment. Longitudinal assessments can provide new insight regarding changes in MVRFs that are related to brain imaging features. OBJECTIVE: To investigate whether longitudinal changes in MVRF spanning up to 25 years would be associated with midlife brain volume and cognition. METHODS: Participants were from the CARDIA study (N = 467, age at year 25 = 50.6±3.4, female/male = 232/235, black/white = 161/306). Three models were developed, each designed to capture change over time; however, we were primarily interested in the average real variability (ARV) as a means of quantifying MVRF variability across all available assessments. RESULTS: Multivariate partial least squares that used ARV metrics identified two significant latent variables (partial correlations ranged between 0.1 and 0.26, p < 0.01) that related MVRF ARV and regional brain volumes. Both latent variables reflected associations between brain volume and MVRF ARV in obesity, cholesterol, blood pressure, and glucose. Subsequent bivariate correlations revealed associations among MVRF factors, aggregate brain volume and cognition. CONCLUSION: This study demonstrates that MVRF variability over time is associated with midlife brain volume in regions that are relevant to later-life cognitive decline.


Asunto(s)
Cognición , Disfunción Cognitiva , Humanos , Masculino , Femenino , Cognición/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Factores de Riesgo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Presión Sanguínea/fisiología , Imagen por Resonancia Magnética/métodos
17.
J Am Coll Radiol ; 20(4): 455-466, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565973

RESUMEN

Enormous recent progress in diagnostic testing can enable more accurate diagnosis and improved clinical outcomes. Yet these tests are increasingly challenging and frustrating; the volume and diversity of results may overwhelm the diagnostic acumen of even the most dedicated and experienced clinician. Because they are gathered and processed within the "silo" of each diagnostic discipline, diagnostic data are fragmented, and the electronic health record does little to synthesize new and existing data into usable information. Therefore, despite great promise, diagnoses may still be incorrect, delayed, or never made. Integrative diagnostics represents a vision for the future, wherein diagnostic data, together with clinical data from the electronic health record, are aggregated and contextualized by informatics tools to direct clinical action. Integrative diagnostics has the potential to identify correct therapies more quickly, modify treatment when appropriate, and terminate treatment when not effective, ultimately decreasing morbidity, improving outcomes, and avoiding unnecessary costs. Radiology, laboratory medicine, and pathology already play major roles in medical diagnostics. Our specialties can increase the value of our examinations by taking a holistic approach to their selection, interpretation, and application to the patient's care pathway. We have the means and rationale to incorporate integrative diagnostics into our specialties and guide its implementation in clinical practice.


Asunto(s)
Radiología , Humanos , Radiología/métodos , Radiografía , Cuidados Paliativos , Informe de Investigación , Examen Físico
18.
J Digit Imaging ; 36(1): 11-16, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36279026

RESUMEN

Technological tools can redesign traditional approaches to radiology education, for example, with simulation cases and via computer-generated feedback. In this study, we investigated the use of an AI-powered, Bayesian inference-based clinical decision support (CDS) software to provide automated "real-time" feedback to trainees during interpretation of clinical and simulation brain MRI examinations. Radiology trainees participated in sessions in which they interpreted 3 brain MRIs: two cases from a routine clinical worklist (one without and one with CDS) and a teaching file-based simulation case with CDS. The CDS software required trainees to input imaging features and differential diagnoses, after which inferred diagnoses were displayed, and the case was reviewed with an attending neuroradiologist. An observer timed each case, including time spent on education, and trainees completed a survey rating their confidence in their findings and the educational value of the case. Ten trainees reviewed 75 brain MRI examinations during 25 reading sessions. Trainees had slightly lower confidence in their findings and diagnosis and rated the educational value slightly higher for simulation cases with CDS compared to clinical cases without CDS (p < 0.05). There were no significant differences in ratings of clinical cases with or without CDS. No differences in overall timing were found among the reading scenarios. Simulation cases with "CDS-provided feedback" may improve the educational value of interpreting imaging studies at a workstation without adding additional time. Further investigation will help drive innovation in trainee education, which may be particularly relevant in this era of increasing remote work and asynchronous attending review.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Internado y Residencia , Radiología , Humanos , Inteligencia Artificial , Teorema de Bayes , Radiología/educación , Radiografía , Competencia Clínica
19.
J Am Heart Assoc ; 11(20): e026460, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36250665

RESUMEN

Background Atrial fibrillation (AF) is associated with increased stroke risk and accelerated cognitive decline, but the association of early manifestations of left atrial (LA) impairment with subclinical changes in brain structure is unclear. We investigated whether abnormal LA structure and function, greater supraventricular ectopy, and intermittent AF are associated with small vessel disease on magnetic resonance imaging of the brain. Methods and Results In the Multi-Ethnic Study of Atherosclerosis, 967 participants completed 14-day ambulatory electrocardiographic monitoring, speckle tracking echocardiography and, a median 17 months later, magnetic resonance imaging of the brain. We assessed associations of LA volume index and reservoir strain, supraventricular ectopy, and prevalent AF with brain magnetic resonance imaging measures of small vessel disease and atrophy. The mean age of participants was 72 years; 53% were women. In multivariable models, LA enlargement was associated with lower white matter fractional anisotropy and greater prevalence of microbleeds; reduced LA strain, indicating worse LA function, was associated with more microbleeds. More premature atrial contractions were associated with lower total gray matter volume. Compared with no AF, intermittent AF (prevalent AF with <100% AF during electrocardiographic monitoring) was associated with lower white matter fractional anisotropy (-0.25 SDs [95% CI, -0.44 to -0.07]) and greater prevalence of microbleeds (prevalence ratio: 1.42 [95% CI, 1.12-1.79]). Conclusions In individuals without a history of stroke or transient ischemic attack, alterations of LA structure and function, including enlargement, reduced strain, frequent premature atrial contractions, and intermittent AF, were associated with increased markers of small vessel disease. Detailed assessment of LA structure and function and extended ECG monitoring may enable early identification of individuals at greater risk of small vessel disease.


Asunto(s)
Aterosclerosis , Fibrilación Atrial , Complejos Atriales Prematuros , Accidente Cerebrovascular , Femenino , Humanos , Anciano , Masculino , Función del Atrio Izquierdo , Valor Predictivo de las Pruebas , Atrios Cardíacos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/epidemiología , Encéfalo/diagnóstico por imagen , Hemorragia Cerebral
20.
Ann Clin Transl Neurol ; 9(10): 1574-1585, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36056631

RESUMEN

OBJECTIVE: Expression of glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis, colocalizes with neuropathology in the brain. Blood levels of GFAP have been associated with cognitive decline and dementia status. However, further examinations at a population-based level are necessary to broaden generalizability to community settings. METHODS: Circulating GFAP levels were assayed using a Simoa HD-1 analyzer in 4338 adults without prevalent dementia from four longitudinal community-based cohort studies. The associations between GFAP levels with general cognition, total brain volume, and hippocampal volume were evaluated with separate linear regression models in each cohort with adjustment for age, sex, education, race, diabetes, systolic blood pressure, antihypertensive medication, body mass index, apolipoprotein E ε4 status, site, and time between GFAP blood draw and the outcome. Associations with incident all-cause and Alzheimer's disease dementia were evaluated with adjusted Cox proportional hazard models. Meta-analysis was performed on the estimates derived from each cohort using random-effects models. RESULTS: Meta-analyses indicated that higher circulating GFAP associated with lower general cognition (ß = -0.09, [95% confidence interval [CI]: -0.15 to -0.03], p = 0.005), but not with total brain or hippocampal volume (p > 0.05). However, each standard deviation unit increase in log-transformed GFAP levels was significantly associated with a 2.5-fold higher risk of incident all-cause dementia (Hazard Ratio [HR]: 2.47 (95% CI: 1.52-4.01)) and Alzheimer's disease dementia (HR: 2.54 [95% CI: 1.42-4.53]) over up to 15-years of follow-up. INTERPRETATION: Results support the potential role of circulating GFAP levels for aiding dementia risk prediction and improving clinical trial stratification in community settings.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Antihipertensivos/uso terapéutico , Apolipoproteínas , Cognición , Proteína Ácida Fibrilar de la Glía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...