Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lasers Med Sci ; 38(1): 111, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099210

RESUMEN

This study aims to examine the effects of acute whole-body photobiomodulation (wbPBM), applied pre-exercise, on bouts of anaerobic cycling (Wingate) performances. Forty-eight healthy, active males and females participated in this single-blind, randomized, crossover study. Participants visited the laboratory three times to complete repeat (4 ×) Wingate testing, with one week between each visit. All participants completed baseline testing during their first visit and randomly received either the wbPBM or placebo condition before testing on the second visit, followed by the opposite condition on the third visit. There were no significant condition × time interactions for any variable (peak power, average power, power decrement, lactate, heart rate, ratings of perceived exertion, heart rate variability (HRV), root-mean square of differences between R-R intervals (rMSSD), power in the high-frequency range (HF) average, power in the low-frequency range (LF) average, total power, LF/HF, or power in the very-low-frequency range average). A main condition effect was only noted for heart rate, where peak heart rate was significantly higher for wbPBM (145, 141-148 bpm) than placebo (143, 139-146 bpm; p = 0.006) and baseline testing (143, 140-146; p = 0.049) throughout the entire testing session (i.e., collapsed across all timepoints). Furthermore, HRV (rMSSD) the following morning after testing was significantly higher for the wbPBM session compared to placebo (p = 0.043). There were no differences in perceived recovery (p = 0.713) or stress (p = 0.978) scores between wbPBM and placebo. Implementing 20 min of wbPBM immediately prior to maximal bouts of anaerobic cycling did not improve performance (i.e., power output) or physiological responses (e.g., lactate). However, wbPBM elicited the ability to work at a higher heart rate throughout testing and seemed to enhance recovery through improved HRV the following morning.


Asunto(s)
Ciclismo , Ácido Láctico , Masculino , Femenino , Humanos , Estudios Cruzados , Anaerobiosis , Método Simple Ciego , Ciclismo/fisiología , Frecuencia Cardíaca/fisiología
2.
Exp Physiol ; 106(6): 1343-1358, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33913209

RESUMEN

NEW FINDINGS: What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT: Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.


Asunto(s)
Síndrome Metabólico , Tejido Adiposo/metabolismo , Animales , Aorta/metabolismo , Obesidad/metabolismo , Ratas , Ratas Zucker
3.
Exp Physiol ; 103(5): 761-776, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29436736

RESUMEN

NEW FINDINGS: What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. ABSTRACT: Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Síndrome Metabólico/fisiopatología , Condicionamiento Físico Animal/fisiología , Estrés Psicológico/fisiopatología , Animales , Depresión/fisiopatología , Endotelio Vascular/fisiopatología , Masculino , Arteria Cerebral Media/fisiopatología , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Zucker , Vasodilatación/fisiología
4.
J Appl Physiol (1985) ; 124(3): 573-582, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097631

RESUMEN

Proponents for electronic cigarettes (E-cigs) claim that they are a safe alternative to tobacco-based cigarettes; however, little is known about the long-term effects of exposure to E-cig vapor on vascular function. The purpose of this study was to determine the cardiovascular consequences of chronic E-cig exposure. Female mice (C57BL/6 background strain) were randomly assigned to chronic daily exposure to E-cig vapor, standard (3R4F reference) cigarette smoke, or filtered air ( n = 15/group). Respective whole body exposures consisted of four 1-h-exposure time blocks, separated by 30-min intervals of fresh air breaks, resulting in intermittent daily exposure for a total of 4 h/day, 5 days/wk for 8 mo. Noninvasive ultrasonography was used to assess cardiac function and aortic arterial stiffness (AS), measured as pulse wave velocity, at three times points (before, during, and after chronic exposure). Upon completion of the 8-mo exposure, ex vivo wire tension myography and force transduction were used to measure changes in thoracic aortic tension in response to vasoactive-inducing compounds. AS increased 2.5- and 2.8-fold in E-cig- and 3R4F-exposed mice, respectively, compared with air-exposed control mice ( P < 0.05). The maximal aortic relaxation to methacholine was 24% and 33% lower in E-cig- and 3R4F-exposed mice, respectively, than in controls ( P < 0.05). No differences were noted in sodium nitroprusside dilation between the groups. 3R4F exposure altered cardiac function by reducing fractional shortening and ejection fraction after 8 mo ( P < 0.05). A similar, although not statistically significant, tendency was also observed with E-cig exposure ( P < 0.10). Histological and respiratory function data support emphysema-associated changes in 3R4F-exposed, but not E-cig-exposed, mice. Chronic exposure to E-cig vapor accelerates AS, significantly impairs aortic endothelial function, and may lead to impaired cardiac function. The clinical implication from this study is that chronic use of E-cigs, even at relatively low exposure levels, induces cardiovascular dysfunction. NEW & NOTEWORTHY Electronic cigarettes (E-cigs) are marketed as safe, but there has been insufficient long-term exposure to humans to justify these claims. This is the first study to report the long-term in vivo vascular consequences of 8 mo of exposure to E-cig vapor in mice (equivalent to ~25 yr of exposure in humans). We report that E-cig exposure increases arterial stiffness and impairs normal vascular reactivity responses, similar to other risk factors, including cigarette smoking, which contribute to the development of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Vapeo/efectos adversos , Animales , Ecocardiografía , Sistemas Electrónicos de Liberación de Nicotina , Femenino , Ratones , Ratones Endogámicos C57BL , Análisis de la Onda del Pulso , Distribución Aleatoria , Pruebas de Función Respiratoria , Rigidez Vascular
5.
J Strength Cond Res ; 26(10): 2685-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22797001

RESUMEN

The primary purpose of the present investigation was to examine the relationships between club head speed, isometric midthigh pull performance, and vertical jump performance in a cohort of recreational golfers. Twelve recreational golfers (age, 20.4 ± 1.0 years; weight, 77.0 ± 9.8 kg; height, 177.8 ± 6.3 cm; body fat, 17.1 ± 7.6%; handicap, 14.5 ± 7.3; experience, 8.9 ± 3.6 years) completed 3 testing sessions: (a) familiarization session and body composition measurements; (b) measurement of force-time curves in the isometric midthigh pull, countermovement, and static vertical jump (SJ); and (c) measurement of club head speed. During sessions 1 and 2, subjects performed 5 countermovement jumps, 5 SJ, and 2 isometric midthigh pulls. Isometric peak force was measured at 30, 50, 90, 100, 200, and 250 milliseconds. Rate of force development was measured among 0-30, 0-50, 0-90, 0-100, 0-200, and 0-250 milliseconds. Peak rate of force development was determined as the highest value in a 10-millisecond sampling windows. During session 3, subjects performed 10 maximal golf swings with a driver to measure club head speed; peak and average club head speed were analyzed across the 10 swings. Golf handicap was moderately correlated with average (r = -0.52, p = 0.04) and maximal club head speed (r = -0.45, p = 0.07). Force at 150 milliseconds during the isomeric midthigh pull test was moderately correlated with average (r = 0.46, p = 0.07) and maximal club head speed (r = 0.47, p = 0.06). Moderate correlations were also found between the rate of force development from 0 to 150 milliseconds and average (r = 0.38, p = 0.11) and maximal club head speed (r = 0.36, p = 0.12). The present findings suggest that the ability to exhibit high ground reaction forces in time frames <200 milliseconds are related to high club head speeds.


Asunto(s)
Golf/fisiología , Contracción Isométrica/fisiología , Movimiento/fisiología , Fuerza Muscular/fisiología , Atletas , Prueba de Esfuerzo/métodos , Humanos , Masculino , Muslo/fisiología , Adulto Joven
6.
ISRN Obes ; 2012: 647348, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24533207

RESUMEN

Background. Accumulation of free fatty acids leads to lipid-toxicity-associated skeletal muscle atrophy. Palmitate treatment reduces myoblast and myotube growth and causes apoptosis in vitro. It is not known if omega-3 fatty acids will protect muscle cells against palmitate toxicity. Therefore, we examined the effects of docosahexaenoic acid (DHA) on skeletal muscle growth. Methods. Mouse myoblasts (C2C12) were differentiated to myotubes, and then treated with 0 or 0.5 mM palmitic acid or 0 or 0.1 mM DHA. Results. Intramyocellular lipid was increased in palmitate-treated cells but was prevented by DHA-palmitate cotreatment. Total AMPK increased in DHA+ palmitate-treated compared to palmitate only cells. RpS6 phosphorylation decreased after palmitate (-55%) and this was blunted by DHA+ palmitate (-35%) treatment. Palmitate treatment decreased PGC1α protein expression by 69%, but was increased 165% with DHA+ palmitate (P = 0.017) versus palmitate alone. While palmitate induced 25% and 90% atrophy in myotubes (after 48 hours and 96 hours, resp.), DHA+ palmitate treatment caused myotube hypertrophy of ~50% and 100% after 48 and 96 hours, respectively. Conclusion. These data show that DHA is protective against palmitate-induced atrophy. Although DHA did not activate the AMPK pathway, DHA treatment restored growth-signaling (i.e., rpS6) and rescued palmitate-induced muscle atrophy.

7.
Am J Physiol Endocrinol Metab ; 295(6): E1307-14, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18840766

RESUMEN

Insulin resistance is a primary characteristic of type 2 diabetes. Several lines of evidence suggest that accumulation of free fatty acids in skeletal muscle may at least in part contribute to insulin resistance and may be linked to mitochondrial dysfunction, leading to apoptosis. Palmitate treatment of several cell lines in vitro results in apoptosis and inhibits protein kinase B (Akt) activity in response to insulin. However, the role of Bax and Bcl-2 in regulating palmitate-induced apoptosis has not been well studied. Therefore, the purpose of this study was to determine whether palmitate-induced apoptosis in C(2)C(12) myotubes is dependent on Bax to Bcl-2 binding. An additional purpose of this study was to determine whether the changes in Bax to Bcl-2 binding corresponded to decreases in Akt signaling in palmitate-treated myoblasts. Apoptotic signaling proteins were examined in C(2)C(12) myotubes treated overnight with palmitate. Bax to Bcl-2 binding was determined through a coimmunoprecipitation assay that was performed in myotubes after 2 h of serum starvation, followed by 10 min of serum reintroduction. This experiment evaluated whether temporal Akt activity coincided with Bax to Bcl-2 binding. Last, the contribution of Bax to palmitate-induced apoptosis was determined by treatment with Bax siRNA. Palmitate treatment increased apoptosis in C(2)C(12) myotubes as shown by a twofold increase in DNA fragmentation, an approximately fivefold increase in caspase-3 activity, and a 2.5-fold increase in caspase-9 activity. Palmitate treatment significantly reduced Akt protein expression and Akt activity. In addition, there was a fourfold reduction in Bax to Bcl-2 binding with palmitate treatment, which mirrored the reduction in Akt(Ser473) phosphorylation. Furthermore, treatment of the C(2)C(12) myotubes with Bax siRNA attenuated the apoptotic effects of palmitate treatment. These data show that palmitate induces Bax-mediated apoptosis in C(2)C(12) myotubes and that this effect corresponds to reductions in Akt(Ser473) phosphorylation.


Asunto(s)
Apoptosis/efectos de los fármacos , Línea Celular , Fibras Musculares Esqueléticas/efectos de los fármacos , Ácido Palmítico/farmacología , Proteína X Asociada a bcl-2/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Fragmentación del ADN/efectos de los fármacos , Ratones , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/antagonistas & inhibidores , Proteína X Asociada a bcl-2/metabolismo
8.
J Appl Physiol (1985) ; 105(6): 1934-43, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18832755

RESUMEN

Mitochondrial apoptosis and apoptotic signaling modulations by aerobic training were studied in cardiac and skeletal muscles of obese Zucker rats (OZR), a rodent model of metabolic syndrome. Comparisons were made between left ventricle, soleus, and gastrocnemius muscles from OZR (n = 16) and aged-matched lean Zucker rats (LZR; n = 16) that were untrained (n = 8) or aerobically trained on a treadmill for 9 wk (n = 8). Cardiac Bcl-2 protein expression levels were approximately 50% lower in the OZR compared with the LZR, with no difference in either of the skeletal muscles. Bax protein expression levels were similar in skeletal muscles of the OZR compared with the LZR. Furthermore, mitochondrial apoptotic signaling was not different in skeletal muscles of OZR and LZR groups. However, there was an approximate sevenfold increase in the Bax protein accumulation in the myocardial mitochondrial-rich protein fraction of the OZR compared with the LZR. Additionally, there was an increase in cytosolic cytochrome c released from the mitochondria, caspase-9 and caspase-3 activity, with a corresponding elevation in DNA fragmentation in the cardiac muscles of the OZR compared with the LZR. Exercise training reduced cardiac Bax protein levels, the mitochondrial localization of Bax, cytosolic cytochrome c, caspase activity, and DNA fragmentation in cardiac muscles of the OZR after exercise, with no change in the skeletal muscles. These data show that mitochondrial apoptosis is elevated in the cardiac but not skeletal muscles of the OZR, but aerobic exercise training was effective in reducing cardiac mitochondrial apoptotic signaling.


Asunto(s)
Apoptosis/fisiología , Mitocondrias Musculares/fisiología , Músculo Esquelético/patología , Miocardio/patología , Obesidad/patología , Condicionamiento Físico Animal/fisiología , Transducción de Señal/fisiología , Aerobiosis/fisiología , Animales , Western Blotting , Caspasas/metabolismo , Citocromos c/metabolismo , Fragmentación del ADN , Ensayo de Inmunoadsorción Enzimática , Etiquetado Corte-Fin in Situ , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatología , Obesidad/fisiopatología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Zucker , Proteína X Asociada a bcl-2/metabolismo
9.
Med Sci Sports Exerc ; 40(9): 1616-22, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18685530

RESUMEN

UNLABELLED: Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein, which is hypothesized to shuttle nonmetabolized fatty acids, particularly when excessive fatty acids are present. PURPOSE: Obese Zucker rats (OZR) have systematically elevated levels of fatty acids, with decreased fatty acid metabolism. We hypothesized that basal UCP3 protein expression levels would be elevated in the skeletal muscles of the OZR compared with the lean Zucker rats (LZR). In addition, because aerobic exercise training has been shown to elevate the ability of skeletal muscle to metabolize lipids, we also hypothesized that aerobic exercise training would decrease skeletal muscle UCP3 protein expression and that this would be more pronounced in the skeletal muscles of the OZR. METHODS: OZR and LZR were aerobically trained on a motorized treadmill for 55 min x d(-1), 5 d x wk(-1), for 9 wk. UCP3 and oxidative enzymes were measured in plantaris, gastrocnemius, and soleus muscles. RESULTS: Basal UCP3 protein expression was elevated approximately eightfold in the plantaris muscles and threefold in the gastrocnemius muscles of the OZR compared with the LZR (P < 0.05). However, there was no difference in UCP3 protein expression in the soleus muscles of the OZR compared with the LZR (P = 0.34). Furthermore, aerobic exercise training did not significantly alter UCP3 protein expression in the soleus, plantaris, or gastrocnemius muscles of the LZR; however, UCP3 protein expression levels decreased in trained OZR soleus and gastrocnemius muscles compared with controls. CONCLUSIONS: The decrease in UCP3 with aerobic exercise training was most notable in the soleus of the OZR. These data demonstrate that the exercise-induced adaptations of UCP3 protein levels are muscle specific in obese animals compared with lean animals.


Asunto(s)
Miembro Posterior , Canales Iónicos/análisis , Proteínas Mitocondriales/análisis , Músculo Esquelético/metabolismo , Obesidad , Condicionamiento Físico Animal/fisiología , Desacopladores/análisis , Animales , Citrato (si)-Sintasa/metabolismo , Ácidos Grasos/metabolismo , Canales Iónicos/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Distribución Aleatoria , Ratas , Ratas Zucker , Desacopladores/metabolismo , Proteína Desacopladora 3
10.
Am J Physiol Cell Physiol ; 295(2): C521-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18508911

RESUMEN

The obese Zucker rat (OZR) is a model of metabolic syndrome, which has lower skeletal muscle size than the lean Zucker rat (LZR). Because satellite cells are essential for postnatal muscle growth, this study was designed to determine whether reduced satellite cell proliferation contributes to reduced skeletal mass in OZR vs. LZR. Satellite cell proliferation was determined by a constant-release 5-bromo-2-deoxyuridine (BrdU) pellet that was placed subcutaneously in each animal. Satellite cell proliferation, as determined by BrdU incorporation, was significantly attenuated in control soleus and plantaris muscles of the OZR compared with that shown in the LZR. To determine whether this attenuation of satellite cell activity could be rescued in OZR muscles, soleus and gastrocnemius muscles were denervated, placing a compensatory load on the plantaris muscle. In the LZR and the OZR after 21 days of loading, increases of approximately 25% and approximately 30%, respectively, were shown in plantaris muscle wet weight compared with that shown in the contralateral control muscle. The number of BrdU-positive nuclei increased similarly in loaded plantaris muscles from LZR and OZR. Myogenin, MyoD, and Akt protein expressions were lower in control muscles of OZR than in those of the LZR, but they were all elevated to similar levels in the loaded plantaris muscles of OZR and LZR. These data indicate that metabolic syndrome may reduce satellite cell proliferation, and this may be a factor that contributes to the reduced mass in control muscles of OZR; however, satellite cell proliferation can be restored with compensatory loading in OZR.


Asunto(s)
Proliferación Celular , Síndrome Metabólico/patología , Células Satélite del Músculo Esquelético/patología , Soporte de Peso/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Glucemia/análisis , Peso Corporal , Bromodesoxiuridina/metabolismo , Núcleo Celular/metabolismo , Insulina/sangre , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/fisiopatología , Desnervación Muscular , Músculo Esquelético/inervación , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Proteína MioD/metabolismo , Miogenina/metabolismo , Obesidad/sangre , Obesidad/metabolismo , Obesidad/patología , Factor de Transcripción PAX7/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Zucker , Células Satélite del Músculo Esquelético/metabolismo , Nervio Tibial/cirugía
11.
J Appl Physiol (1985) ; 99(1): 204-9, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15774698

RESUMEN

Although it has been demonstrated that exercise training has an antiapoptotic effect on postmitotic myocytes, the mechanisms responsible for this effect are still largely unclear. Because the antiapoptotic effect of exercise training in postmitotic myocytes could be possibly mediated by the upregulation of apoptotic suppressors, this study examined the effect of endurance training on endogenous apoptotic suppressors including X-chromosome-linked inhibitor of apoptosis protein (XIAP), apoptosis repressor with caspases recruitment domain protein (ARC), and FADD-like inhibitor protein (FLIP) in skeletal and cardiac muscles. Eight adult Sprague-Dawley rats were trained 5 days weekly for 8 wk on treadmill, and eight sedentary rats served as controls. Soleus and ventricle muscles were dissected 2 days after the last training session. The mRNA content of XIAP, ARC, and FLIP was estimated by RT-PCR with ribosomal 18S RNA used as an internal control. The protein expression of XIAP, ARC, FLIP(S), and FLIP(alpha) was assessed by Western immunoblot. After training, mRNA content of ARC and FLIP was not different between the control and trained animals, whereas XIAP mRNA content was elevated by 22 and 14% in the trained soleus and cardiac muscles, respectively, relative to the control samples. No difference was found in the protein content of FLIP(S) and FLIP(alpha) between control and trained muscles, whereas XIAP and ARC protein content was increased by 18 and 38%, respectively, in the soleus muscle of trained animals. Furthermore, negative relationships were found between XIAP and apoptotic DNA fragmentation as well as ARC and caspase-3 activity. These findings are consistent with the hypothesis that the modulation of apoptotic suppressors is involved in training-induced attenuation of apoptosis in skeletal and cardiac muscles.


Asunto(s)
Apoptosis/fisiología , Corazón/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/métodos , Proteínas/metabolismo , Adaptación Fisiológica/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Prueba de Esfuerzo , Masculino , Ratas , Ratas Sprague-Dawley , Proteína Inhibidora de la Apoptosis Ligada a X
12.
FASEB J ; 18(10): 1150-2, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15132982

RESUMEN

The effect of exercise on apoptosis in postmitotic tissues is not known. In this study, we investigated the effect of regular moderate physical activity (i.e., exercise training) on the extent of apoptosis in rat skeletal and cardiac muscles. Adult Sprague Dawley rats were trained (TR) 5 days weekly for 8 wk on treadmill. Sedentary rats served as controls (CON). An ELISA was used to detect mono- and oligonucleosome fragmentation as an indicator of apoptosis. Bcl-2, Bax, Apaf-1, AIF, cleaved PARP, cleaved caspase-3, cleaved/active caspase-9, heat shock protein (HSP)70, Cu/Zn-SOD, and Mn-SOD protein levels were determined by Western analyses. Bcl-2 and Bax transcript contents were estimated by RT-PCR. A spectrofluorometric assay was used to determine caspase-3 activity. DNA fragmentation in ventricles of the TR group decreased by 15% whereas that in soleus of the TR group tended to decrease (P=0.058) when compared with CON group. Protein contents of Bcl-2, HSP70, and Mn-SOD increased in both soleus and ventricle muscles of TR animals when compared with CON animals. Apaf-1 protein content in the soleus of TR animals was lower than that of CON animals. Bcl-2 mRNA levels increased in both ventricle and soleus muscles of TR animals, and Bax mRNA levels decreased in the soleus of TR animals when compared with CON animals. Furthermore, HSP70 protein content was negatively correlated to Bax mRNA content and was positively correlated to Bcl-2 protein and mRNA contents. Mn-SOD protein content was negatively correlated to the apoptotic index, and caspase-3 activity and was positively correlated to Bcl-2 transcript content and HSP70 protein content. These data suggest that exercise training attenuates the extent of apoptosis in cardiac and skeletal muscles.


Asunto(s)
Apoptosis , Proteínas Musculares/análisis , Músculo Esquelético/citología , Miocardio/citología , Condicionamiento Físico Animal/fisiología , Animales , Factor Inductor de la Apoptosis , Factor Apoptótico 1 Activador de Proteasas , Caspasas/análisis , Fragmentación del ADN , Flavoproteínas/análisis , Proteínas HSP70 de Choque Térmico/análisis , Ventrículos Cardíacos , Masculino , Proteínas de la Membrana/análisis , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/análisis , Proteínas/análisis , Proteínas Proto-Oncogénicas c-bcl-2/análisis , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/análisis , Proteína X Asociada a bcl-2
13.
J Appl Physiol (1985) ; 97(1): 277-85, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15033961

RESUMEN

The intent of this study was to determine whether endurance exercise training regulates increases in metabolic enzymes, which parallel modulations of myogenin and MyoD in skeletal muscle of rats. Adult Sprague-Dawley rats were endurance trained (TR) 5 days weekly for 8 wk on a motorized treadmill. They were killed 48 h after their last bout of exercise. Sedentary control (Con) rats were killed at the same time as TR animals. Myogenin, MyoD, citrate synthase (CS), cytochrome-c oxidase (COX) subunits II and VI, lactate dehydrogenase (LDH), and myosin light chain mRNA contents were determined in soleus muscles by using RT-PCR. Myogenin mRNA content was also estimated by using dot-blot hybridization. Protein expression levels of myogenin and MyoD were measured by Western blots. CS enzymatic activity was also measured. RT-PCR measurements showed that the mRNA contents of myogenin, CS, COX II, COX VI, and LDH were 25, 20, 17, 16, and 18% greater, respectively, in TR animals compared with Con animals (P < 0.05). The ratio of myogenin to MyoD mRNA content estimated by RT-PCR in TR animals was 28% higher than that in Con animals (P < 0.05). Myosin light chain expression was similar in Con and TR muscles. Results from dot-blot hybridization to a riboprobe further confirmed the increase in myogenin mRNA level in TR group. Western blot analysis indicated a 24% greater level of myogenin protein in TR animals compared with Con animals (P < 0.01). The soleus muscles from TR animals had a 25% greater CS enzymatic activity than the Con animals (P < 0.01). Moreover, myogenin mRNA and protein contents were positively correlated to CS activity and mRNA contents of CS, COX II, and COX VI (P < 0.05). These data are consistent with the hypothesis that myogenin is in the pathway for exercise-induced changes in mitochondrial enzymes.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Músculo Esquelético/enzimología , Miogenina/biosíntesis , Miogenina/genética , Oxidorreductasas/biosíntesis , Oxidorreductasas/genética , Condicionamiento Físico Animal/fisiología , Resistencia Física/genética , Resistencia Física/fisiología , Animales , Western Blotting , Peso Corporal/fisiología , Citrato (si)-Sintasa/biosíntesis , Citrato (si)-Sintasa/genética , Inmunohistoquímica , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/metabolismo , Quinasa de Cadena Ligera de Miosina/biosíntesis , Quinasa de Cadena Ligera de Miosina/genética , Oxidación-Reducción , Sondas ARN , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Appl Physiol (1985) ; 94(2): 555-60, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12531911

RESUMEN

The present study was designed to examine the acute and chronic effects of endurance treadmill training on citrate synthase (CS) gene expression and enzymatic activity in rat skeletal and cardiac muscles. Adult rats were endurance trained for 8 wk on a treadmill. They were killed 1 h (T(1), n = 8) or 48 h (T(48), n = 8) after their last bout of exercise training. Eight rats were sedentary controls (C) during the training period. CS mRNA levels and enzymatic activities of the soleus and ventricle muscles were determined. Training resulted in higher CS mRNA levels in both the soleus muscles (21% increase in T(1); 18% increase in T(48), P < 0.05) and ventricle muscles (23% increase in T(1); 17% increase in T(48), P < 0.05) when compared with the C group. The CS enzyme activities were 42 (P < 0.01) and 25% (P < 0.01) greater in the soleus muscles of T(1) and T(48) groups, respectively, when compared with that of the C group. Soleus CS enzyme activity was significantly greater in the T(1) vs. T(48) groups (P < 0.05). However, no appreciable alterations in CS enzyme activities were observed in the ventricle muscles in both training groups. These findings suggest differential responses of skeletal and cardiac muscles in CS enzymatic activity but similar responses in CS gene expression at 1 and 48 h after the last session of endurance training. Moreover, our data support the existence of an acute effect of exercise on the training-induced elevation in CS activity in rat soleus but not ventricle muscles.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Músculo Esquelético/enzimología , Músculos Papilares/enzimología , Educación y Entrenamiento Físico , Resistencia Física , Animales , Citrato (si)-Sintasa/genética , Expresión Génica , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...