Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Inflammopharmacology ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570398

RESUMEN

Gastric ulcers affect approx. 10% of population. Non-steroidal anti-inflammatory drugs (NSAIDs), including acetylsalicylic acid (ASA) predispose to or impair the physiologically complex healing of pre-existing ulcers. Since H2S is an endogenous cytoprotective molecule, we hypothesized that new H2S-releasing ASA-derivative (ATB-340) could overcome pathological impact of NSAIDs on GI regeneration.Clinically translational gastric ulcers were induced in Wistar rats using state-of-the-art microsurgical model employing serosal application of acetic acid. This was followed by 9 days long i.g. daily treatment with vehicle, ATB-340 (6-24 mg/kg) or equimolar ASA doses (4-14 mg/kg). Ulcer area was assessed macro- and microscopically. Prostaglandin (PG)E2  levels, indicating pharmacological activity of NSAIDs and 8-hydroxyguanozine content, reflecting nucleic acids oxidation in serum/gastric mucosa, were determined by ELISA. Qualitative and/or quantitative pathway-specific alterations at the ulcer margin were evaluated using real-time PCR and mass spectrometry-based proteomics.ASA, unlike ATB-340, dose-dependently delayed/impaired gastric tissue recovery, deregulating 310 proteins at the ulcer margin, including Ras signalling, wound healing or apoptosis regulators. ATB-340 maintained NSAIDs-specific cyclooxygenase-inhibiting capacity on systemic and GI level but in time-dependent manner. High dose of ATB-340 (24 mg/kg daily), but not ASA, decreased nucleic acids oxidation and upregulated anti-oxidative/anti-inflammatory heme oxygenase-1, 24-dehydrocholesterol reductase or suppressor of cytokine signalling (SOCS3) at the ulcer margin.Thus, ASA impairs the physiological healing of pre-existing gastric ulcers, inducing the extensive molecularly functional and proteomic alterations at the wound margin. H2S-releasing ATB-340 maintains the target activity of NSAIDs with limited impact on gastric PGE2 signalling and physiological GI regeneration, enhancing anti-inflammatory and anti-oxidative response, and providing the pharmacological advantage.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38671861

RESUMEN

Recently discovered irisin, a member of the myokines family, is a potential mediator of exercise-induced energy metabolism and a factor promoting browning of the white adipose tissue. Recent evidence indicates that this myokine, released from contracting muscles, can mediate the beneficial effects of exercise on health. Irisin may be a potential therapeutic agent against obesity and has been shown to play an important role in the protection of various cells, tissues, and organs due to its anti-inflammatory, antioxidative, and anti-cancer properties. Our aim was to review the recent experimental and clinical studies on irisin and its expression, release into the bloodstream, tissue targets, and potential contribution to the protective effects of exercise in the gastrointestinal tract. Particular emphasis was placed on inflammatory bowel disease, intestinal ischemia/reperfusion injury, periodontitis, and other digestive tract disorders, including carcinogenesis. Overall, irisin holds significant potential as a novel target molecule, offering a safe and therapeutic approach to treating various gastrointestinal diseases.

3.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256013

RESUMEN

We are pleased to present our Editorial to this Special Issue on "Adipokines, Myokines, and Physical Exercise in Health and Disease 2 [...].


Asunto(s)
Ejercicio Físico , Mioquinas , Adipoquinas
4.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255781

RESUMEN

Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Ratones , Ratones Endogámicos C57BL , Fosfatasa Alcalina , Ratones Obesos , Colitis/inducido químicamente , Colitis/terapia , Antiinflamatorios , Colorantes , Citocinas
5.
Antioxidants (Basel) ; 12(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37627540

RESUMEN

Hydrogen sulfide (H2S) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- or osteoarthritis-related inflammation. However, its clinical use is strongly limited since indomethacin inhibits gastric mucosal prostaglandin (PG) biosynthesis, predisposing to or even inducing ulcerogenesis. The H2S moiety was shown to decrease the GI toxicity of some NSAIDs. However, the GI safety and anti-oxidative effect of a novel H2S-releasing indomethacin derivative (ATB-344) remain unexplored. Thus, we aimed here to compare the impact of ATB-344 and classic indomethacin on gastric mucosal integrity and their ability to counteract the development of oxidative gastric mucosal injuries. Wistar rats were pretreated intragastrically (i.g.) with vehicle, ATB-344 (7-28 mg/kg i.g.), or indomethacin (5-20 mg/kg i.g.). Next, animals were exposed to microsurgical gastric ischemia-reperfusion (I/R). Gastric damage was assessed micro- and macroscopically. The volatile H2S level was assessed in the gastric mucosa using the modified methylene blue method. Serum and gastric mucosal PGE2 and 8-hydroxyguanozine (8-OHG) concentrations were evaluated by ELISA. Molecular alterations for gastric mucosal barrier-specific targets such as cyclooxygenase-1 (COX)-1, COX-2, heme oxygenase-1 (HMOX)-1, HMOX-2, superoxide dismutase-1 (SOD)-1, SOD-2, hypoxia inducible factor (HIF)-1α, xanthine oxidase (XDH), suppressor of cytokine signaling 3 (SOCS3), CCAAT enhancer binding protein (C/EBP), annexin A1 (ANXA1), interleukin 1 beta (IL-1ß), interleukin 1 receptor type I (IL-1R1), interleukin 1 receptor type II (IL-1R2), inducible nitric oxide synthase (iNOS), tumor necrosis factor receptor 2 (TNFR2), or H2S-producing enzymes, cystathionine γ-lyase (CTH), cystathionine ß-synthase (CBS), or 3-mercaptopyruvate sulfur transferase (MPST), were assessed at the mRNA level by real-time PCR. ATB-344 (7 mg/kg i.g.) reduced the area of gastric I/R injuries in contrast to an equimolar dose of indomethacin. ATB-344 increased gastric H2S production, did not affect gastric mucosal PGE2 content, prevented RNA oxidation, and maintained or enhanced the expression of oxidation-sensitive HMOX-1 and SOD-2 in line with decreased IL-1ß and XDH. We conclude that due to the H2S-releasing ability, i.g., treatment with ATB-344 not only exerts dose-dependent GI safety but even enhances gastric mucosal barrier capacity to counteract acute oxidative injury development when applied at a low dose of 7 mg/kg, in contrast to classic indomethacin. ATB-344 (7 mg/kg) inhibited COX activity on a systemic level but did not affect cytoprotective PGE2 content in the gastric mucosa and, as a result, evoked gastroprotection against oxidative damage.

6.
Cancer Metastasis Rev ; 42(4): 1219-1256, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37460910

RESUMEN

The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-ß, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.


Asunto(s)
Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Inflamación/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409299

RESUMEN

Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett's esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to "protective" adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Reflujo Gastroesofágico , Adenocarcinoma/metabolismo , Adipoquinas , Tejido Adiposo/metabolismo , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Neoplasias Esofágicas , Ejercicio Físico , Humanos , Músculo Esquelético/metabolismo , Obesidad/complicaciones , Obesidad/genética , Estados Unidos
8.
Am J Cancer Res ; 12(3): 1337-1371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411238

RESUMEN

Despite of the improvement in gastric cancer (GC) therapies patients still suffer from cancer recurrence and metastasis. Recently, the high ratio of these events combined with increased chemoresistance has been related to the asymptomatic Helicobacter pylori (Hp) infections. The limited efficiency of GC treatment strategies is also increasingly attributed to the activity of tumor stroma with the key role of cancer-associated fibroblasts (CAFs). In order to investigate the influence of Hp infection within stromal gastric tissue on cancer initiation and progression, we have exposed normal gastric epithelial cells to long-term influence of Hp-activated gastric fibroblast secretome. We have referred obtained results to this secretome influence on cancer cell lines. The invasive properties of cells were checked by time-lapse video microscopy and basement membrane assays. The expression of invasion-related factors was checked by RT-PCR, Western Blot, immunofluorescence and Elisa. Hp-activated gastric fibroblast secretome induced EMT type 3-related shifts of RGM1 cell phenotype; in particular it augmented their motility, cytoskeletal plasticity and invasiveness. These effects were accompanied by Snail1/Twist activation, the up-regulation of cytokeratin19/FAP/TNC/Integrin-ß1 and MMPs, and by the induction of cMethigh/pEGFRhigh phenotype. Mechanistic studies suggest that this microevolution next to TGFß relies also on c-Met/EGFR signaling interplay and engages HGF-Integrin-Ras-dependent Twist activation leading to MMP and TNC upregulation with subsequent positive auto- and paracrine feedback loops intensifying this process. Similar shifts were detected in cancer cells exposed to this secretome. Collectively, we show that the secretome of Hp-infected fibroblasts induces reprogramming/microevolution of epithelial and cancer cells towards type 3 EMT-related invasive phenotype in a manner reciprocally reliant next to TGFß on cMet/Integrin-ß1/p-EGFR-dependent axis. Apparently, the phenotypical plasticity of Hp-activated fibroblast reprogrammed gastric epithelial cells determines their susceptibility to the pro-invasive signaling, which results in re-organization of gastric niches and provides the cues for GC promotion/progression.

9.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35328382

RESUMEN

Inflammatory bowel diseases (IBD) are commonly considered as Crohn's disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Fosfatasa Alcalina , Animales , Biomarcadores/metabolismo , Colitis/inducido químicamente , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Ratones , Ratones Obesos , Obesidad , Estrés Oxidativo
10.
Obes Surg ; 32(5): 1586-1600, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277793

RESUMEN

Obesity may be treated by bariatric procedures and is related to enterohormone release modulation. Nevertheless, a majority of commonly used surgical procedures have a significant impact on vagus nerve function by breaking the connections with its gastric branches. In the case of an intragastric balloon (BAL), this interaction is unclear. However, BAL-induced weight reduction is not long-lasting. Interestingly, this method has not been used in combination with vagotomy (VAG). Thus, we evaluated, for the first time, the short- and long-term effects of combined BAL and VAG using the animal-based translational model and compared these effects with sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). Wistar rats were fed a high-calorie diet for 8 weeks to induce obesity before SG, RYGB, BAL + / - VAG. Animals' weight and eating behaviors were monitored weekly. After 90 days, serum samples were collected to evaluate postprandial and fasting GLP-1, GIP, PYY, ghrelin, glucagon, insulin, leptin, and pancreatic polypeptide concentrations by fluorescent assay. VAG, SG, RYGB, and BAL + VAG significantly reduced body weight 30 and 90 days after surgery. BAL alone induced temporal weight reduction observed after 30 days, reversed after 90 days. Calories intake was reduced at the first half of the observation period in all groups. Fluid intake was reduced in all groups except SG and BAL. Enterohormone profile for BAL + VAG was comparable to SG and RYGB but not BAL. VAG and BAL + VAG but not BAL alone maintain weight reduction, alimentary intake changes, and enterohormone release after long-term observation. VAG may improve the effectiveness of bariatric procedures for obesity treatment in clinical practice.


Asunto(s)
Cirugía Bariátrica , Balón Gástrico , Derivación Gástrica , Obesidad Mórbida , Animales , Cirugía Bariátrica/métodos , Gastrectomía/métodos , Derivación Gástrica/métodos , Obesidad/cirugía , Obesidad Mórbida/cirugía , Ratas , Ratas Wistar , Vagotomía , Pérdida de Peso/fisiología
11.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069086

RESUMEN

Hydrogen sulfide (H2S) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive H2S-prodrug, BW-HS-101 with the ability to release H2S in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.5-50 µmol/kg) or its analogue without the ability to release H2S, BW-iHS-101 prior to ASA administration (125 mg/kg, intragastrically). BW-HS-101 was administered alone or in combination with nitroarginine (L-NNA, 20 mg/kg, intraperitoneally) or zinc protoporphyrin IX (10 mg/kg, intraperitoneally). Gastroprotective effects of BW-HS-101 were additionally evaluated against necrotic damage induced by intragastrical administration of 75% ethanol. Gastric mucosal damage was assessed microscopically, and gastric blood flow was determined by laser flowmetry. Gastric mucosal DNA oxidation and PGE2 concentration were assessed by ELISA. Serum and/or gastric protein concentrations of IL-1α, IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-13, VEGF, GM-CSF, IFN-γ, TNF-α, and EGF were determined by a microbeads/fluorescent-based multiplex assay. Changes in gastric mucosal iNOS, HMOX-1, SOCS3, IL1-R1, IL1-R2, TNF-R2, COX-1, and COX-2 mRNA were assessed by real-time PCR. BW-HS-101 or BW-iHS-101 applied at a dose of 50 µmol/kg protected gastric mucosa against ASA-induced gastric damage and prevented a decrease in the gastric blood flow level. H2S prodrug decreased DNA oxidation, systemic and gastric mucosal inflammation with accompanied upregulation of SOCS3, and EGF and HMOX-1 expression. Pharmacological inhibition of nitric oxide (NO) synthase but not carbon monoxide (CO)/heme oxygenase (HMOX) activity by L-NNA or ZnPP, respectively, reversed the gastroprotective effect of BW-HS-101. BW-HS-101 also protected against ethanol-induced gastric injury formation. We conclude that BW-HS-101, due to its ability to release H2S in a controllable manner, prevents gastric mucosa against drugs-induced gastropathy, inflammation and DNA oxidation, and upregulate gastric microcirculation. Gastroprotective effects of this H2S prodrug involves endogenous NO but not CO activity and could be mediated by cytoprotective and anti-inflammatory SOCS3 and EGF pathways.


Asunto(s)
Mucosa Gástrica/efectos de los fármacos , Sulfuro de Hidrógeno/farmacocinética , Sustancias Protectoras/farmacología , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Aspirina/efectos adversos , ADN/metabolismo , Liberación de Fármacos , Etanol/toxicidad , Mucosa Gástrica/irrigación sanguínea , Mucosa Gástrica/patología , Gastritis/inducido químicamente , Gastritis/tratamiento farmacológico , Gastritis/patología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Óxido Nítrico/metabolismo , Nitroarginina/administración & dosificación , Nitroarginina/farmacología , Profármacos/farmacocinética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas/metabolismo , Sustancias Protectoras/administración & dosificación , Protoporfirinas/administración & dosificación , Protoporfirinas/farmacología , Ratas Wistar
12.
Front Pharmacol ; 12: 657457, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995080

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.

13.
Acta Pharm Sin B ; 11(2): 456-475, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643824

RESUMEN

Metal-based carbon monoxide (CO)-releasing molecules have been shown to exert anti-inflammatory and anti-oxidative properties maintaining gastric mucosal integrity. We are interested in further development of metal-free CO-based therapeutics for oral administration. Thus, we examine the protective effect of representative CO prodrug, BW-CO-111, in rat models of gastric damage induced by necrotic ethanol or aspirin, a representative non-steroidal anti-inflammatory drug. Treatment effectiveness was assessed by measuring the microscopic/macroscopic gastric damage area and gastric blood flow by laser flowmetry. Gastric mucosal mRNA and/or protein expressions of HMOX1, HMOX2, nuclear factor erythroid 2-related factor 2, COX1, COX2, iNos, Anxa1 and serum contents of TGFB1, TGFB2, IL1B, IL2, IL4, IL5, IL6, IL10, IL12, tumor necrosis factor α, interferon γ, and GM-CSF were determined. CO content in gastric mucosa was assessed by gas chromatography. Pretreatment with BW-CO-111 (0.1 mg/kg, i.g.) increased gastric mucosal content of CO and reduced gastric lesions area in both models followed by increased GBF. These protective effects of the CO prodrug were supported by changes in expressions of molecular biomarkers. However, because the pathomechanisms of gastric damage differ between topical administration of ethanol and aspirin, the possible protective and anti-inflammatory mechanisms of BW-CO-111 may be somewhat different in these models.

14.
Antioxidants (Basel) ; 10(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557311

RESUMEN

Intestinal alkaline phosphatase (IAP) is an essential mucosal defense factor involved in the process of maintenance of gut homeostasis. We determined the effect of moderate exercise (voluntary wheel running) with or without treatment with IAP on the course of experimental murine 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis by assessing disease activity index (DAI), colonic blood flow (CBF), plasma myokine irisin levels and the colonic and adipose tissue expression of proinflammatory cytokines, markers of oxidative stress (SOD2, GPx) and adipokines in mice fed a standard diet (SD) or high-fat diet (HFD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant decrease in CBF, and a significant increase in the colonic expression of tumor necrosis factor-alpha (TNF-α), IL-6, IL-1ß and leptin mRNAs and decrease in the mRNA expression of adiponectin. These effects were aggravated in sedentary HFD mice but reduced in exercising animals, potentiated by concomitant treatment with IAP, especially in obese mice. Exercising HFD mice demonstrated a substantial increase in the mRNA for adiponectin and a decrease in mRNA leptin expression in intestinal mucosa and mesenteric fat as compared to sedentary animals. The expression of SOD2 and GPx mRNAs was significantly decreased in adipose tissue in HFD mice, but these effects were reversed in exercising mice with IAP administration. Our study shows for the first time that the combination of voluntary exercise and oral IAP treatment synergistically favored healing of intestinal inflammation, strengthened the antioxidant defense and ameliorated the course of experimental colitis; thus, IAP may represent a novel adjuvant therapy to alleviate inflammatory bowel disease (IBD) in humans.

15.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238373

RESUMEN

Physical exercise is known to influence hormonal mediators of appetite, but the effect of short-term maximal intensity exercise on plasma levels of appetite hormones and cytokines has been little studied. We investigated the effect of a 30 s Wingate Test, followed by a postprandial period, on appetite sensations, food intake, and appetite hormones. Twenty-six physically active young males rated their subjective feelings of hunger, prospective food consumption, and fatigue on visual analogue scales at baseline, after exercise was completed, and during the postprandial period. Blood samples were obtained for the measurement of nesfatin-1, ghrelin, leptin, insulin, pancreatic polypeptide (PP), human growth factor (hGH) and cytokine interleukin-6 (IL-6), irisin and plasma lactate concentrations, at 30 min before exercise, immediately (210 s) after exercise, and 30 min following a meal and at corresponding times in control sedentary males without ad libitum meal intake, respectively. Appetite perceptions and food intake were decreased in response to exercise. Plasma levels of irisin, IL-6, lactate, nesfatin-1 and ghrelin was increased after exercise and then it was returned to postprandial/control period in both groups. A significant rise in plasma insulin, hGH and PP levels after exercise was observed while meal intake potentiated this response. In conclusion, an acute short-term fatiguing exercise can transiently suppress hunger sensations and food intake in humans. We postulate that this physiological response involves exercise-induced alterations in plasma hormones and the release of myokines such as irisin and IL-6, and supports the notion of existence of the skeletal muscle-brain-gut axis. Nevertheless, the detailed relationship between acute exercise releasing myokines, appetite sensations and impairment of this axis leading to several diseases should be further examined.


Asunto(s)
Regulación del Apetito/genética , Apetito/fisiología , Ejercicio Físico , Fatiga/terapia , Adulto , Apetito/genética , Regulación del Apetito/fisiología , Índice de Masa Corporal , Ingestión de Alimentos/fisiología , Fatiga/sangre , Fatiga/fisiopatología , Fibronectinas/sangre , Ghrelina/sangre , Humanos , Hambre/fisiología , Interleucina-6/sangre , Ácido Láctico/sangre , Masculino , Nucleobindinas/sangre , Polipéptido Pancreático/sangre , Periodo Posprandial/fisiología
16.
Microorganisms ; 8(10)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023180

RESUMEN

Helicobacter pylori (Hp)-induced inflammatory reaction leads to a persistent disturbance of gastric mucosa and chronic gastritis evidenced by deregulation of tissue self-renewal and local fibrosis with the crucial role of epithelial-mesenchymal transition (EMT) in this process. As we reported before, Hp activated gastric fibroblasts into cells possessing cancer-associated fibroblast properties (CAFs), which secreted factors responsible for EMT process initiation in normal gastric epithelial RGM1 cells. Here, we showed that the long-term incubation of RGM1 cells in the presence of Hp-activated gastric fibroblast (Hp-AGF) secretome induced their shift towards plastic LGR5+/Oct4high/Sox-2high/c-Mychigh/Klf4low phenotype (l.t.EMT+RGM1 cells), while Hp-non-infected gastric fibroblast (GF) secretome prompted a permanent epithelial-myofibroblast transition (EMyoT) of RGM1 cells favoring LGR-/Oct4high/Sox2low/c-Myclow/Klf4high phenotype (l.t.EMT-RGM1 cells). TGFß1 rich secretome from Hp-reprogrammed fibroblasts prompted phenotypic plasticity and EMT of gastric epithelium, inducing pro-neoplastic expansion of post-EMT cells in the presence of low TGFßR1 and TGFßR2 activity. In turn, TGFßR1 activity along with GF-induced TGFßR2 activation in l.t.EMT-RGM1 cells prompted their stromal phenotype. Collectively, our data show that infected and non-infected gastric fibroblast secretome induces alternative differentiation programs in gastric epithelium at least partially dependent on TGFß signaling. Hp infection-activated fibroblasts can switch gastric epithelium microevolution towards cancer stem cell-related differentiation program that can potentially initiate gastric neoplasm.

17.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899384

RESUMEN

Barrett's esophagus (BE) is a premalignant condition caused by gastroesophageal reflux disease (GERD), where physiological squamous epithelium is replaced by columnar epithelium. Several in vivo and in vitro BE models were developed with questionable translational relevance when implemented separately. Therefore, we aimed to screen Gene Expression Omnibus 2R (GEO2R) databases to establish whether clinical BE molecular profile was comparable with animal and optimized human esophageal squamous cell lines-based in vitro models. The GEO2R tool and selected databases were used to establish human BE molecular profile. BE-specific mRNAs in human esophageal cell lines (Het-1A and EPC2) were determined after one, three and/or six-day treatment with acidified medium (pH 5.0) and/or 50 and 100 µM bile mixture (BM). Wistar rats underwent microsurgical procedures to generate esophagogastroduodenal anastomosis (EGDA) leading to BE. BE-specific genes (keratin (KRT)1, KRT4, KRT5, KRT6A, KRT13, KRT14, KRT15, KRT16, KRT23, KRT24, KRT7, KRT8, KRT18, KRT20, trefoil factor (TFF)1, TFF2, TFF3, villin (VIL)1, mucin (MUC)2, MUC3A/B, MUC5B, MUC6 and MUC13) mRNA expression was assessed by real-time PCR. Pro/anti-inflammatory factors (interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, tumor necrosis factor α, interferon γ, granulocyte-macrophage colony-stimulating factor) serum concentration was assessed by a Luminex assay. Expression profile in vivo reflected about 45% of clinical BE with accompanied inflammatory response. Six-day treatment with 100 µM BM (pH 5.0) altered gene expression in vitro reflecting in 73% human BE profile and making this the most reliable in vitro tool taking into account two tested cell lines. Our optimized and established combined in vitro and in vivo BE models can improve further physiological and pharmacological studies testing pathomechanisms and novel therapeutic targets of this disorder.


Asunto(s)
Esófago de Barrett/patología , Reflujo Gastroesofágico/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Terapia Molecular Dirigida , Animales , Esófago de Barrett/genética , Reflujo Gastroesofágico/genética , Fármacos Gastrointestinales/uso terapéutico , Humanos , Masculino , Ratas , Ratas Wistar
19.
Cells ; 9(5)2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408627

RESUMEN

Exposure to acidic gastric content due to malfunction of lower esophageal sphincter leads to acute reflux esophagitis (RE) leading to disruption of esophageal epithelial cells. Carbon monoxide (CO) produced by heme oxygenase (HMOX) activity or released from its donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) was reported to protect gastric mucosa against acid-dependent non-steroidal anti-inflammatory drug-induced damage. Thus, we aimed to investigate if CO affects RE-induced esophageal epithelium lesions development. RE induced in Wistar rats by the ligation of a junction between pylorus and forestomach were pretreated i.g. with vehicle CORM-2; RuCl3; zinc protoporphyrin IX, or hemin. CORM-2 was combined with NG-nitro-L-arginine (L-NNA), indomethacin, capsazepine, or capsaicin-induced sensory nerve ablation. Esophageal lesion score (ELS), esophageal blood flow (EBF), and mucus production were determined by planimetry, laser flowmetry, histology. Esophageal Nrf-2, HMOXs, COXs, NOSs, TNF-α and its receptor, IL-1 family and IL-1 receptor antagonist (RA), NF-κB, HIF-1α, annexin-A1, suppressor of cytokine signaling (SOCS3), TRPV1, c-Jun, c-Fos mRNA/protein expressions, PGE2, 8-hydroxy-deoxyguanozine (8-OHdG) and serum COHb, TGF-ß1, TGF-ß2, IL-1ß, and IL-6 content were assessed by PCR, immunoblotting, immunohistochemistry, gas chromatography, ELISA or Luminex platform. Hemin or CORM-2 alone or combined with L-NNA or indomethacin decreased ELS. Capsazepine or capsaicin-induced denervation reversed CORM-2 effects. COHb blood content, esophageal HMOX-1, Nrf-2, TRPV1 protein, annexin-A1, HIF-1α, IL-1 family, NF-κB, c-Jun, c-Fos, SOCS3 mRNA expressions, and 8-OHdG levels were elevated while PGE2 concentration was decreased after RE. CO donor-maintained elevated mucosal TRPV1 protein, HIF-1 α, annexin-A1, IL-1RA, SOCS3 mRNA expression, or TGF-ß serum content, decreasing 8-OHdG level, and particular inflammatory markers expression/concentration. CORM-2 and Nrf-2/HMOX-1/CO pathway prevent esophageal mucosa against RE-induced lesions, DNA oxidation, and inflammatory response involving HIF-1α, annexin-A1, SOCS3, IL-1RA, TGF-ß-modulated pathways. Esophagoprotective and hyperemic CO effects are in part mediated by afferent sensory neurons and TRPV1 receptors activity with questionable COX/PGE2 or NO/NOS systems involvement.


Asunto(s)
Monóxido de Carbono/farmacología , Mucosa Esofágica/patología , Esofagitis/patología , Compuestos Organometálicos/farmacología , Sustancias Protectoras/farmacología , Enfermedad Aguda , Animales , Carboxihemoglobina/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/sangre , Mucosa Esofágica/efectos de los fármacos , Esofagitis/sangre , Esófago/irrigación sanguínea , Esófago/patología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/patología , Moco/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Flujo Sanguíneo Regional/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
Oxid Med Cell Longev ; 2020: 5083876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377300

RESUMEN

Oxidative stress reflects an imbalance between oxidants and antioxidants in favor of the oxidants capable of evoking tissue damage. Like hydrogen sulfide (H2S) and nitric oxide (NO), carbon monoxide (CO) is an endogenous gaseous mediator recently implicated in the physiology of the gastrointestinal (GI) tract. CO is produced in mammalian tissues as a byproduct of heme degradation catalyzed by the heme oxygenase (HO) enzymes. Among the three enzymatic isoforms, heme oxygenase-1 (HO-1) is induced under conditions of oxidative stress or tissue injury and plays a beneficial role in the mechanism of protection against inflammation, ischemia/reperfusion (I/R), and many other injuries. According to recently published data, increased endogenous CO production by inducible HO-1, its delivery by novel pharmacological CO-releasing agents, or even the direct inhalation of CO has been considered a promising alternative in future experimental and clinical therapies against various GI disorders. However, the exact mechanisms underlying behind these CO-mediated beneficial actions are not fully explained and experimental as well as clinical studies on the mechanism of CO-induced protection are awaited. For instance, in a variety of experimental models related to gastric mucosal damage, HO-1/CO pathway and CO-releasing agents seem to prevent gastric damage mainly by reduction of lipid peroxidation and/or increased level of enzymatic antioxidants, such as superoxide dismutase (SOD) or glutathione peroxidase (GPx). Many studies have also revealed that HO-1/CO can serve as a potential defensive pathway against oxidative stress observed in the liver and pancreas. Moreover, increased CO levels after treatment with CO donors have been reported to protect the gut against formation of acute GI lesions mainly by the regulation of reactive oxygen species (ROS) production and the antioxidative activity. In this review, we focused on the role of H2S and NO molecular sibling, CO/HO pathway, and therapeutic potential of CO-releasing pharmacological tools in the regulation of oxidative stress-induced damage within the GI tract with a special emphasis on the esophagus, stomach, and intestines and also two solid and important metabolic abdominal organs, the liver and pancreas.


Asunto(s)
Antioxidantes/uso terapéutico , Monóxido de Carbono/uso terapéutico , Sistema Digestivo/patología , Sulfuro de Hidrógeno/uso terapéutico , Óxido Nítrico/uso terapéutico , Estrés Oxidativo/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA