Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Genes (Basel) ; 14(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37761888

RESUMEN

Genetics researchers increasingly combine data across many sources to increase power and to conduct analyses that cross multiple individual studies. However, there is often a lack of alignment on outcome measures when the same constructs are examined across studies. This inhibits comparison across individual studies and may impact the findings from meta-analysis. Using a well-characterized genotypic (brain-derived neurotrophic factor: BDNF) and phenotypic constructs (working memory and reading comprehension), we employ an approach called Rosetta, which allows for the simultaneous examination of primary studies that employ related but incompletely overlapping data. We examined four studies of BDNF, working memory, and reading comprehension with a combined sample size of 1711 participants. Although the correlation between working memory and reading comprehension over all participants was high, as expected (ρ = 0.45), the correlation between working memory and reading comprehension was attenuated in the BDNF Met/Met genotype group (ρ = 0.18, n.s.) but not in the Val/Val (ρ = 0.44) or Val/Met (ρ = 0.41) groups. These findings indicate that Met/Met carriers may be a unique and robustly defined subgroup in terms of memory and reading comprehension. This study demonstrates the utility of the Rosetta method when examining complex phenotypes across multiple studies, including psychiatric genetic studies, as shown here, and also for the mega-analysis of cohorts generally.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Sitios de Carácter Cuantitativo , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Imagen por Resonancia Magnética , Fenotipo , Cognición
2.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686052

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Desarrollo del Lenguaje , Humanos , Trastorno del Espectro Autista/genética , Lenguaje , Encéfalo , Trastornos del Desarrollo del Lenguaje/genética
3.
Hum Genet ; 142(2): 217-230, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36251081

RESUMEN

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two major neurodevelopmental disorders that frequently co-occur. However, the genetic mechanism of the co-occurrence remains unclear. The New Jersey Language and Autism Genetics Study (NJLAGS) collected more than 100 families with at least one member affected by ASD. NJLAGS families show a high prevalence of ADHD and provide a good opportunity to study shared genetic risk factors for ASD and ADHD. The linkage study of the NJLAGS families revealed regions on chromosomes 12 and 17 that are significantly associated with ADHD. Using whole-genome sequencing data on 272 samples from 73 NJLAGS families, we identified potential risk genes for ASD and ADHD. Within the linkage regions, we identified 36 genes that are associated with ADHD using a pedigree-based gene prioritization approach. KDM6B (Lysine Demethylase 6B) is the highest-ranking gene, which is a known risk gene for neurodevelopmental disorders, including ASD and ADHD. At the whole-genome level, we identified 207 candidate genes from the analysis of both small variants and structure variants, including both known and novel genes. Using enrichment and protein-protein interaction network analyses, we identified gene ontology terms and pathways enriched for ASD and ADHD candidate genes, such as cilia function and cation channel activity. Candidate genes and pathways identified in our study improve the understanding of the genetic etiology of ASD and ADHD and will lead to new diagnostic or therapeutic interventions for ASD and ADHD in the future.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno Autístico/genética , Prevalencia , Factores de Riesgo , Histona Demetilasas con Dominio de Jumonji
4.
Genes (Basel) ; 13(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893067

RESUMEN

Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs, could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in 73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families with at least one ASD patient were recruited and were further assessed for language impairment, reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148 3' untranslated region (3' UTR) variants were identified in the dataset. After applying several filtering criteria, including population allele frequency, brain expression, miRNA functional regions, and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs (targeting 326 genes) and 3' UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and protein-protein interaction network analysis, we identified clusters of genes and pathways that are important for neurodevelopment. The miRNAs and miRNA target genes identified in this study are potentially involved in neurodevelopmental disorders and should be considered for further functional studies.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , MicroARNs , Regiones no Traducidas 3'/genética , Alelos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo
6.
Stem Cell Reports ; 17(6): 1380-1394, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35623351

RESUMEN

Neural precursor cell (NPC) dysfunction has been consistently implicated in autism. Induced pluripotent stem cell (iPSC)-derived NPCs from two autism groups (three idiopathic [I-ASD] and two 16p11.2 deletion [16pDel]) were used to investigate if proliferation is commonly disrupted. All five individuals display defects, with all three macrocephalic individuals (two 16pDel, one I-ASD) exhibiting hyperproliferation and the other two I-ASD subjects displaying hypoproliferation. NPCs were challenged with bFGF, and all hyperproliferative NPCs displayed blunted responses, while responses were increased in hypoproliferative cells. mRNA expression studies suggest that different pathways can result in similar proliferation phenotypes. Since 16pDel deletes MAPK3, P-ERK was measured. P-ERK is decreased in hyperproliferative but increased in hypoproliferative NPCs. While these P-ERK changes are not responsible for the phenotypes, P-ERK and bFGF response are inversely correlated with the defects. Finally, we analyzed iPSCs and discovered that 16pDel displays hyperproliferation, while idiopathic iPSCs were normal. These data suggest that NPC proliferation defects are common in ASD.


Asunto(s)
Trastorno Autístico , Células Madre Pluripotentes Inducidas , Trastorno Autístico/genética , Proliferación Celular/genética , Deleción Cromosómica , Humanos , Mitógenos , Fenotipo
7.
Mol Cell Neurosci ; 109: 103562, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32987141

RESUMEN

Abnormal dendritic arbor development has been implicated in a number of neurodevelopmental disorders, such as autism and Rett syndrome, and the neuropsychiatric disorder schizophrenia. Postmortem brain samples from subjects with schizophrenia show elevated levels of NOS1AP in the dorsolateral prefrontal cortex, a region of the brain associated with cognitive function. We previously reported that the long isoform of NOS1AP (NOS1AP-L), but not the short isoform (NOS1AP-S), negatively regulates dendrite branching in rat hippocampal neurons. To investigate the role that NOS1AP isoforms play in human dendritic arbor development, we adapted methods to generate human neural progenitor cells and neurons using induced pluripotent stem cell (iPSC) technology. We found that increased protein levels of either NOS1AP-L or NOS1AP-S decrease dendrite branching in human neurons at the developmental time point when primary and secondary branching actively occurs. Next, we tested whether pharmacological agents can decrease the expression of NOS1AP isoforms. Treatment of human iPSC-derived neurons with d-serine, but not clozapine, haloperidol, fluphenazine, or GLYX-13, results in a reduction in endogenous NOS1AP-L, but not NOS1AP-S, protein expression; however, d-serine treatment does not reverse decreases in dendrite number mediated by overexpression of NOS1AP isoforms. In summary, we demonstrate how an in vitro model of human neuronal development can help in understanding the etiology of schizophrenia and can also be used as a platform to screen drugs for patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Dendritas/ultraestructura , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neuronas/citología , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Células Cultivadas , Clozapina/farmacología , Evaluación Preclínica de Medicamentos , Flufenazina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/fisiología , Haloperidol/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligopéptidos/farmacología , Técnicas de Placa-Clamp , Isoformas de Proteínas/fisiología , Esquizofrenia/etiología , Esquizofrenia/genética , Serina/farmacología
8.
Psychiatry Res ; 291: 113271, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32629297

RESUMEN

Previous studies have reported associations between the serotonin transporter 5-HTTLPR genotype and antisocial and aggressive traits and between child maltreatment and antisocial traits. However, few studies have examined whether 5-HTTLPR moderates the influence of childhood maltreatment on callous and unemotional traits, a hallmark of psychopathy. Using a prospective cohort design, children with documented cases of maltreatment and matched controls were followed up and interviewed in adulthood. DNA was extracted from blood and saliva (N = 414) and callous-unemotional (CU) traits were assessed. Childhood maltreatment predicted higher CU scores in adulthood, whereas the effect of 5-HTTLPR was not significant. The effect of child maltreatment on CU traits did not differ by genetic risk (high or low activity 5-HTTLPR), whereas controls with the LL genotype had higher CU scores than controls with the SS genotype. Similar results were found for females and White, non-Hispanics, but not for males and Blacks. Variations in 5-HTTLPR did not affect the impact of child maltreatment on CU traits in adulthood. Genetic risk had a stronger effect on adults with lower environmental risk (controls). Having a history of child maltreatment or the LL genotype placed participants at risk for higher levels of callous and unemotional trait scores.


Asunto(s)
Maltrato a los Niños/psicología , Trastorno de la Conducta/genética , Trastorno de la Conducta/psicología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Adulto , Agresión/psicología , Niño , Maltrato a los Niños/tendencias , Preescolar , Trastorno de la Conducta/diagnóstico , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
9.
J Neurodev Disord ; 11(1): 21, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519145

RESUMEN

BACKGROUND: Qualitatively atypical language development characterized by non-sequential skill acquisition within a developmental domain, which has been called developmental deviance or difference, is a common characteristic of autism spectrum disorder (ASD). We developed the Response Dispersion Index (RDI), a measure of this phenomenon based on intra-subtest scatter of item responses on standardized psychometric assessments, to assess the within-task variability among individuals with language impairment (LI) and/or ASD. METHODS: Standard clinical assessments of language were administered to 502 individuals from the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Participants were divided into four diagnostic groups: unaffected, ASD-only, LI-only, and ASD + LI. For each language measure, RDI was defined as the product of the total number of test items and the sum of the weight (based on item difficulty) of test items missed. Group differences in RDI were assessed, and the relationship between RDI and ASD diagnosis among individuals with LI was investigated for each language assessment. RESULTS: Although standard scores were unable to distinguish the LI-only and ASD/ASD + LI groups, the ASD/ASD + LI groups had higher RDI scores compared to LI-only group across all measures of expressive, pragmatic, and metalinguistic language. RDI was positively correlated with quantitative ASD traits across all subgroups and was an effective predictor of ASD diagnosis among individuals with LI. CONCLUSIONS: The RDI is an effective quantitative metric of developmental deviance/difference that correlates with ASD traits, supporting previous associations between ASD and non-sequential skill acquisition. The RDI can be adapted to other clinical measures to investigate the degree of difference that is not captured by standard performance summary scores.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Desarrollo del Lenguaje , Trastornos del Lenguaje/diagnóstico , Pruebas del Lenguaje , Psicometría , Análisis y Desempeño de Tareas , Adolescente , Adulto , Trastorno del Espectro Autista/complicaciones , Estudios de Cohortes , Femenino , Humanos , Trastornos del Lenguaje/etiología , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Retrospectivos , Adulto Joven
10.
Autism ; 23(8): 1982-1992, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30931583

RESUMEN

The Diagnostic and Statistical Manual of Mental Disorders' (5th ed.) Social (Pragmatic) Communication Disorder is meant to capture the social elements of communication dysfunction in children who do not meet autism spectrum disorder criteria. It is unclear whether Social (Pragmatic) Communication Disorder captures these elements without overlapping with Autism Spectrum Disorder or the Diagnostic and Statistical Manual of Mental Disorders' (5th ed.) Language Disorder. Standardized behavioral assessments administered during a family genetics study were used to evaluate the social communication impairment and the restricted interests and repetitive behaviors in persons with autism spectrum disorder, language impairment, or neither. Social communication impairment and restricted interests and repetitive behavior were significantly correlated in all family members regardless of affection status. Rates of social communication impairment and restricted interests and repetitive behavior were highest in individuals with autism spectrum disorder. One-third of family members with language impairment presented with at least mild/moderate levels of social communication impairment (36.6%) and restricted interests and repetitive behavior (43.3%). A subset of unaffected members also presented with mild/moderate levels of social communication impairment (parents = 10.1%, siblings 11.6%) and restricted interests and repetitive behavior (parents = 14.0%, siblings = 22.1%). The majority of child family members with mild/moderate levels of social communication impairment had similar restricted interest and repetitive behavior levels reflecting criteria representing the Broad Autism Phenotype. These data suggest that social pragmatic communication disorder does not capture the profiles of children who have both social communication impairment and restricted interests and repetitive behavior but are in need of clinical services.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Padres/psicología , Hermanos/psicología , Trastorno de Comunicación Social/diagnóstico , Conducta Estereotipada , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Niño , Preescolar , Diagnóstico Diferencial , Manual Diagnóstico y Estadístico de los Trastornos Mentales , Femenino , Humanos , Masculino , Fenotipo , Trastorno de Comunicación Social/fisiopatología , Trastorno de Comunicación Social/psicología , Adulto Joven
11.
PLoS One ; 13(3): e0194233, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29529098

RESUMEN

Despite much progress, few genetic findings for schizophrenia have been assessed by functional validation experiments at the molecular level. We previously reported evidence for genetic linkage of broadly defined schizophrenia to chromosome 17q25 in a sample of 24 multiplex families. 2,002 SNPs under this linkage peak were analyzed for evidence of linkage disequilibrium using the posterior probability of linkage (PPL) framework. SNP rs1060120 produced the strongest evidence for association, with a PPLD|L score of 0.21. This SNP is located within the 3'UTR of the histone gene H3F3B and colocalizes with potential gene target miR-616. A custom miRNA target prediction program predicted that the binding of miR-616 to H3F3B transcripts would be altered by the allelic variants of rs1060120. We used dual luciferase assays to experimentally validate this interaction. The rs1060120 A allele significantly reduced luciferase expression, indicating a stronger interaction with miR-616 than the G allele (p = 0.000412). These results provide functional validation that this SNP could alter schizophrenia epigenetic mechanisms thereby contributing to schizophrenia-related disease risk.


Asunto(s)
Sitios de Unión , Histonas/genética , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Interferencia de ARN , ARN Mensajero/genética , Esquizofrenia/genética , Regiones no Traducidas 3' , Alelos , Expresión Génica , Genes Reporteros , Estudios de Asociación Genética , Genotipo , Humanos , Desequilibrio de Ligamiento , Fenotipo , Esquizofrenia/diagnóstico
12.
Mol Cell Neurosci ; 89: 20-32, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29601869

RESUMEN

Antipsychotic medications are inefficient at treating symptoms of schizophrenia (SCZ), and N-methyl d-aspartate receptor (NMDAR) agonists are potential therapeutic alternatives. As such, these agonists may act on different pathways and proteins altered in the brains of patients with SCZ than do antipsychotic medications. Here, we investigate the effects of administration of the antipsychotic haloperidol and NMDAR agonist d-serine on function and expression of three proteins that play significant roles in SCZ: nitric oxide synthase 1 adaptor protein (NOS1AP), dopamine D2 (D2) receptor, and disrupted in schizophrenia 1 (DISC1). We administered haloperidol or d-serine to male and female Sprague Dawley rats via intraperitoneal injection for 12 days and subsequently examined cortical expression of NOS1AP, D2 receptor, and DISC1. We found sex-specific effects of haloperidol and d-serine treatment on the expression of these proteins. Haloperidol significantly reduced expression of D2 receptor in male, but not female, rats. Conversely, d-serine reduced expression of NOS1AP in male rats and did not affect D2 receptor expression. d-serine treatment also reduced expression of DISC1 in male rats and increased DISC1 expression in female rats. As NOS1AP is overexpressed in the cortex of patients with SCZ and negatively regulates NMDAR signaling, we subsequently examined whether treatment with antipsychotics or NMDAR agonists can reverse the detrimental effects of NOS1AP overexpression in vitro as previously reported by our group. NOS1AP overexpression promotes reduced dendrite branching in vitro, and as such, we treated cortical neurons overexpressing NOS1AP with different antipsychotics (haloperidol, clozapine, fluphenazine) or d-serine for 24 h and determined the effects of these drugs on NOS1AP expression and dendrite branching. While antipsychotics did not affect NOS1AP protein expression or dendrite branching in vitro, d-serine reduced NOS1AP expression and rescued NOS1AP-mediated reductions in dendrite branching. Taken together, our data suggest that d-serine influences the function and expression of NOS1AP, D2 receptor, and DISC1 in a sex-specific manner and reverses the effects of NOS1AP overexpression on dendrite morphology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corteza Cerebral/efectos de los fármacos , Neuronas/efectos de los fármacos , Serina/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antipsicóticos/farmacología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Haloperidol/farmacología , Isomerismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Serina/química , Factores Sexuales
13.
J Vis Exp ; (133)2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29553565

RESUMEN

Human brain development proceeds through a series of precisely orchestrated processes, with earlier stages distinguished by proliferation, migration, and neurite outgrowth; and later stages characterized by axon/dendrite outgrowth and synapse formation. In neurodevelopmental disorders, often one or more of these processes are disrupted, leading to abnormalities in brain formation and function. With the advent of human induced pluripotent stem cell (hiPSC) technology, researchers now have an abundant supply of human cells that can be differentiated into virtually any cell type, including neurons. These cells can be used to study both normal brain development and disease pathogenesis. A number of protocols using hiPSCs to model neuropsychiatric disease use terminally differentiated neurons or use 3D culture systems termed organoids. While these methods have proven invaluable in studying human disease pathogenesis, there are some drawbacks. Differentiation of hiPSCs into neurons and generation of organoids are lengthy and costly processes that can impact the number of experiments and variables that can be assessed. In addition, while post-mitotic neurons and organoids allow the study of disease-related processes, including dendrite outgrowth and synaptogenesis, they preclude the study of earlier processes like proliferation and migration. In neurodevelopmental disorders, such as autism, abundant genetic and post-mortem evidence indicates defects in early developmental processes. Neural precursor cells (NPCs), a highly proliferative cell population, may be a suitable model in which to ask questions about ontogenetic processes and disease initiation. We now extend methodologies learned from studying development in mouse and rat cortical cultures to human NPCs. The use of NPCs allows us to investigate disease-related phenotypes and define how different variables (e.g., growth factors, drugs) impact developmental processes including proliferation, migration, and differentiation in only a few days. Ultimately, this toolset can be used in a reproducible and high-throughput manner to identify disease-specific mechanisms and phenotypes in neurodevelopmental disorders.


Asunto(s)
Células-Madre Neurales/metabolismo , Trastornos del Neurodesarrollo/diagnóstico , Neuronas/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Humanos , Ratones , Células-Madre Neurales/citología , Trastornos del Neurodesarrollo/patología , Fenotipo , Ratas
14.
Behav Genet ; 47(2): 193-201, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27826669

RESUMEN

Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2  = 0.20) and FM (h 2  = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.


Asunto(s)
Umbral Auditivo/fisiología , Dislexia/genética , Lectura , Estimulación Acústica , Teorema de Bayes , Dislexia/psicología , Familia , Femenino , Genética Conductual/métodos , Humanos , Masculino , Biología Molecular/métodos , Linaje
15.
Front Cell Neurosci ; 10: 6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26869880

RESUMEN

Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function.

17.
Child Abuse Negl ; 47: 59-69, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25700779

RESUMEN

Childhood maltreatment has been linked to numerous negative health outcomes. However, few studies have examined mediating processes using longitudinal designs or objectively measured biological data. This study sought to determine whether child abuse and neglect predicts allostatic load (a composite indicator of accumulated stress-induced biological risk) and to examine potential mediators. Using a prospective cohort design, children (ages 0-11) with documented cases of abuse and neglect were matched with non-maltreated children and followed up into adulthood with in-person interviews and a medical status exam (mean age 41). Allostatic load was assessed with nine physical health indicators. Child abuse and neglect predicted allostatic load, controlling for age, sex, and race. The direct effect of child abuse and neglect persisted despite the introduction of potential mediators of internalizing and externalizing problems in adolescence and social support and risky lifestyle in middle adulthood. These findings reveal the long-term impact of childhood abuse and neglect on physical health over 30 years later.


Asunto(s)
Adultos Sobrevivientes del Maltrato a los Niños/psicología , Alostasis , Maltrato a los Niños/psicología , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos , Factores de Riesgo
18.
Biol Psychiatry ; 77(11): 969-78, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25542305

RESUMEN

BACKGROUND: Where a neuron is positioned in the brain during development determines neuronal circuitry and information processing needed for normal brain function. When aberrations in this process occur, cognitive disorders may result. Patients diagnosed with schizophrenia have been reported to show altered neuronal connectivity and heterotopias. To elucidate pathways by which this process occurs and become aberrant, we have chosen to study the long isoform of nitric oxide synthase 1 adaptor protein (NOS1AP), a protein encoded by a susceptibility gene for schizophrenia. METHODS: To determine whether NOS1AP plays a role in cortical patterning, we knocked down or co-overexpressed NOS1AP and a green fluorescent protein or red fluorescent protein (TagRFP) reporter in neuronal progenitor cells of the embryonic rat neocortex using in utero electroporation. We analyzed sections of cortex (ventricular zone, intermediate zone, and cortical plate [CP]) containing green fluorescent protein or red fluorescent protein TagRFP positive cells and counted the percentage of positive cells that migrated to each region from at least three rats for each condition. RESULTS: NOS1AP overexpression disrupts neuronal migration, resulting in increased cells in intermediate zone and less cells in CP, and decreases dendritogenesis. Knockdown results in increased migration, with more cells reaching the CP. The phosphotyrosine binding region, but not the PDZ-binding motif, is necessary for NOS1AP function. Amino acids 181 to 307, which are sufficient for NOS1AP-mediated decreases in dendrite number, have no effect on migration. CONCLUSIONS: Our studies show for the first time a critical role for the schizophrenia-associated gene NOS1AP in cortical patterning, which may contribute to underlying pathophysiology seen in schizophrenia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Movimiento Celular/genética , Neocórtex/citología , Células-Madre Neurales/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Células COS , Chlorocebus aethiops , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mutación/genética , Células-Madre Neurales/metabolismo , Dominios PDZ/genética , Embarazo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Transgénicas , Transfección , Proteína Fluorescente Roja
19.
Front Neurol ; 5: 238, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484875

RESUMEN

The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways.

20.
Hum Hered ; 78(1): 9-16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24969307

RESUMEN

OBJECTIVES: Linkage analysis can help determine regions of interest in whole-genome sequence studies. However, many linkage studies rely on older microsatellite (MSAT) panels. We set out to determine whether results would change if we regenotyped families using a dense map of SNPs. METHODS: We selected 47 Hispanic-American families from the NIMH Repository and Genomics Resource (NRGR) schizophrenia data repository. We regenotyped all individuals with DNA available from the NRGR on the Affymetrix Lat Array. After optimizing SNP selection for inclusion on the linkage map, we compared information content (IC) and linkage results using MSAT, SNP and MSAT+SNP maps. RESULTS: As expected, SNP provided a higher average IC (0.78, SD 0.03) than MSAT (0.51, SD 0.10) in a direct 'apples-to-apples' comparison using only individuals genotyped on both platforms; while MSAT+SNP provided only a slightly higher IC (0.82, SD 0.03). However, when utilizing all available individuals, including those who had genotypes available on only one platform, the IC was substantially increased using MSAT+SNP (0.76, SD 0.05) compared to SNP (0.61, SD 0.02). Linkage results changed appreciably between MSAT and MSAT+SNP in terms of magnitude, rank ordering and localization of peaks. CONCLUSIONS: Regenotyping older family data can substantially alter the conclusions of linkage analyses.


Asunto(s)
Mapeo Cromosómico/métodos , Ligamiento Genético , Técnicas de Genotipaje/métodos , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple , Mapeo Cromosómico/estadística & datos numéricos , Bases de Datos Genéticas/estadística & datos numéricos , Salud de la Familia , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Genotipo , Técnicas de Genotipaje/estadística & datos numéricos , Hispánicos o Latinos/genética , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Desequilibrio de Ligamiento , Reproducibilidad de los Resultados , Esquizofrenia/etnología , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...