Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38792758

RESUMEN

To measure associations between gardening with different compost amendments and the human gut microbiota composition, gardeners (n = 25) were provided with one of three types of compost: chicken manure (CM), dairy manure and plant material (DMP), or plant-based (P). Stool samples were collected before gardening (T1), after compost amendment (T2), and at peak garden harvest (T3). Compost and soil samples were collected. DNA was extracted, 16S rRNA libraries were established, and libraries were sequenced by Illumina MiSeq. Sequences were processed using mothur, and data were analyzed in R software version 4.2.2. Fast expectation-maximization microbial source tracking analysis was used to determine stool bacteria sources. At T2/T3, the gut microbiotas of P participants had the lowest Shannon alpha diversity, which was also the trend at T1. In stool from T2, Ruminococcus 1 were less abundant in the microbiotas of those using P compost as compared to those using CM or DMP. At T2, Prevotella 9 had the highest abundance in the microbiotas of those using CM compost. In participants who used CM compost to amend their gardening plots, a larger proportion of the human stool bacteria were sourced from CM compared to soil. Soil exposure through gardening was associated with a small but detectable change in the gardeners' gut microbiota composition. These results suggest that human interactions with soil through gardening could potentially impact health through alterations to the gut microbiota.

2.
Microorganisms ; 12(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276199

RESUMEN

Though studies in animals and humans link the gut microbiota to brain development and control of behavior, little research has examined this connection in healthy infants. This prospective study could determine associations between infant gut microbiota at 3 months, and infant temperament at 9 months, in a prospective pregnancy cohort (Michigan Archive for Research on Child Health; n = 159). Microbiota profiling with 16S rRNA gene sequencing was conducted on fecal samples obtained at 3 months of age. Based on the relative abundance of gut microbiotas, three groups were identified, and each group was characterized by different microbes. Infant temperament outcomes were reported by mothers using the Infant Behavior Questionnaire-Revised Very Short Form at a mean age of 9.4 months. Fully adjusted multivariate linear regression models showed that certain clusters were associated with higher negative emotionality scores, prominently among infants who had poor vitamin D intake. However, no associations were evident between gut microbiota clusters and temperament scales after FDR correction. After using three differential abundance tools, Firmicutes was associated with higher positive affect/surgency scores, whereas Clostridioides was associated with lower scores. An association between the gut microbiota and early infancy temperament was observed; thus, this study warrants replication, with a particular focus on vitamin D moderation.

3.
Life (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430985

RESUMEN

Diet impacts human gut microbial composition. Phytochemicals in cayenne pepper (CP), such as capsaicin, have anti-inflammatory properties and alter bacterial growth in vitro. However, the evidence that CP impacts the human microbiota and intestinal inflammation in free-living adults is lacking. Thus, the objective of this randomized cross-over study was to determine the influence of CP on human gut microbiota and intestinal inflammation in vivo. A total of 29 participants were randomly allocated to consume two 250 mL servings of tomato juice plus 1.8 g of CP each day or juice only for 5 days before crossing over to the other study arm. Fecal samples were analyzed. CP reduced Oscillibacter and Phascolarctobacterium but enriched Bifidobacterium and Gp6. When stratified by BMI (body mass index), only the increase in Gp6 was observed in all BMI groups during CP treatment. Stool concentrations of lipocalin-2 and calprotectin were similar regardless of CP treatment. However, lipocalin-2 and calprotectin levels were positively correlated in samples taken after CP consumption. Neither lipocalin-2 nor calprotectin levels were related to gut microbial composition. In conclusion, in healthy adult humans under typical living conditions, consumption of CP minimally influenced the gut microbiota and had little impact on intestinal inflammation.

4.
Children (Basel) ; 9(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35053739

RESUMEN

The feasibility of gastrointestinal (GI) microbiome work in a pediatric intensive care unit (PICU) to determine the GI microbiota composition of infants as compared to control infants from the same hospital was investigated. In a single-site observational study at an urban quaternary care children's hospital in Western Michigan, subjects less than 6 months of age, admitted to the PICU with severe respiratory syncytial virus (RSV) bronchiolitis, were compared to similarly aged control subjects undergoing procedural sedation in the outpatient department. GI microbiome samples were collected at admission (n = 20) and 72 h (n = 19) or at time of sedation (n = 10). GI bacteria were analyzed by sequencing the V4 region of the 16S rRNA gene. Alpha and beta diversity were calculated. Mechanical ventilation was required for the majority (n = 14) of study patients, and antibiotics were given at baseline (n = 8) and 72 h (n = 9). Control subjects' bacterial communities contained more Porphyromonas, and Prevotella (p = 0.004) than those of PICU infants. The ratio of Prevotella to Bacteroides was greater in the control than the RSV infants (mean ± SD-1.27 ± 0.85 vs. 0.61 ± 0.75: p = 0.03). Bacterial communities of PICU infants were less diverse than those of controls with a loss of potentially protective populations.

5.
Nutrients ; 14(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35011077

RESUMEN

Breastfeeding and introduction of solid food are the two major components of infant feeding practices that influence gut microbiota composition in early infancy. However, it is unclear whether additional factors influence the microbiota of infants either exclusively breastfed or not breastfed. We obtained 194 fecal samples from infants at 3-9 months of age, extracted DNA, and sequenced the V4 region of the 16S rRNA gene. Feeding practices and clinical information were collected by questionnaire and abstraction of birth certificates. The gut microbiota of infants who were exclusively breastfed displayed significantly lower Shannon diversity (p-adjust < 0.001) and different gut microbiota composition compared to infants who were not breastfed (p-value = 0.001). Among the exclusively breastfed infants, recipients of vitamin D supplements displayed significantly lower Shannon diversity (p-adjust = 0.007), and different gut microbiota composition structure than non-supplemented, breastfed infants (p-value = 0.02). MaAslin analysis identified microbial taxa that associated with breastfeeding and vitamin D supplementation. Breastfeeding and infant vitamin D supplement intake play an important role in shaping infant gut microbiota.


Asunto(s)
Lactancia Materna , Heces/microbiología , Microbiota/efectos de los fármacos , Vitamina D/administración & dosificación , Bacterias/clasificación , Índice de Masa Corporal , Suplementos Dietéticos , Femenino , Humanos , Lactante , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...