Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Food Prot ; 86(12): 100167, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774839

RESUMEN

A broad understanding of community member food safety priorities in the fresh produce supply chain does not currently exist. This information is essential to improve food safety knowledge and practices effectively and efficiently throughout the fresh produce industry; therefore, the goal of this study was to identify and rank community produce safety priorities in the United States. Survey questions were designed and approved by food safety experts for participants to rank 24 fresh produce safety priorities. The anonymous survey was distributed online via Qualtrics™ to fresh produce community members from November 2020 to May 2021. A score was calculated for each priority by summing weighted ranking scores across responses. Descriptive statistics and logistic regression were used to determine frequencies and distribution of response and identify factors (e.g., role in produce safety, size/location of organization/operation) that influenced rankings. A total of 281 respondents represented fourteen different roles in the fresh produce industry, with most identified as growers (39.5%). Produce operations were distributed across the U.S. and annual produce sales ranged from below $25,000 to over $5,000,000. Health and hygiene, training, postharvest sanitation, traceability, and harvest sanitation were ranked as the top five food safety priorities. These findings provide insight into community member priorities in fresh produce safety and can be used to inform intervention efforts, ranging from specialized training for produce growers and packers, industry-driven research projects, and gaps in risk communication strategies.


Asunto(s)
Inocuidad de los Alimentos , Higiene , Estados Unidos , Humanos , Saneamiento , Comercio
2.
Food Microbiol ; 113: 104271, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37098431

RESUMEN

Our previous study found that water activity (aw)- and matrix-dependent bacterial resistance wasdeveloped in Salmonella Typhimurium during antimicrobial-assisted heat treatment in low moisture foods (LMFs) matrices. To better understand the molecular mechanism behind the observed bacterial resistance, gene expression analysis was conducted on S. Typhimurium adapted to different conditions with or without the trans-cinnamaldehyde (CA)-assisted heat treatment via quantitative polymerase chain reaction (qPCR). Expression profiles of nine stress-related genes were analyzed. The upregulation of rpoH and dnaK and downregulation of ompC were observed during bacterial adaptation in LMF matrices and the combined heat treatment, which likely contributed to the bacterial resistance during the combined treatment. Their expression profiles were partially consistent with the previously-observed effect of aw or matrix on bacterial resistance. The upregulation of rpoE, otsB, proV, and fadA was also observed during adaptation in LMF matrices and might contribute to desiccation resistance, but likely did not contribute to bacterial resistance during the combined heat treatment. The observed upregulation of fabA and downregulation of ibpA could not be directly linked to bacterial resistance to either desiccation or the combined heat treatment. The results may assist the development of more efficient processing methods against S. Typhimurium in LMFs.


Asunto(s)
Calor , Salmonella typhimurium , Salmonella typhimurium/genética , Acroleína/farmacología , Microbiología de Alimentos
3.
Food Microbiol ; 112: 104228, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36906318

RESUMEN

Increased thermal resistance of Salmonella at low water activity (aw) is a significant food safety concern in low-moisture foods (LMFs). We evaluated whether trans-cinnamaldehyde (CA, 1000 ppm) and eugenol (EG, 1000 ppm), which can accelerate thermal inactivation of Salmonella Typhimurium in water, can show similar effect in bacteria adapted to low aw in different LMF components. Although CA and EG significantly accelerated thermal inactivation (55 °C) of S. Typhimurium in whey protein (WP), corn starch (CS) and peanut oil (PO) at 0.9 aw, such effect was not observed in bacteria adapted to lower aw (0.4). The matrix effect on bacterial thermal resistance was observed at 0.9 aw, which was ranked as WP > PO > CS. The effect of heat treatment with CA or EG on bacterial metabolic activity was also partially dependent on the food matrix. Bacteria adapted to lower aw had lower membrane fluidity and unsaturated to saturated fatty acids ratio, suggesting that bacteria at low aw can change its membrane composition to increase its rigidity, thus increasing resistance against the combined treatments. This study demonstrates the effect of aw and food components on the antimicrobials-assisted heat treatment in LMF and provides an insight into the resistance mechanism.


Asunto(s)
Eugenol , Salmonella typhimurium , Calor , Microbiología de Alimentos , Agua/análisis , Recuento de Colonia Microbiana
4.
J Food Prot ; 85(11): 1515-1521, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35960953

RESUMEN

ABSTRACT: After studies with powdered infant formula indicated that the enhancement of thermal inactivation of Cronobacter sakazakii by butyl para-hydroxybenzoate (BPB) was blocked by high protein concentrations, we hypothesized that BPB would retain its synergistic activity in foods with limited protein and lipid concentrations. This hypothesis was tested by examining the ability of BPB to enhance the thermal inactivation of C. sakazakii 607 at 58°C in commercial apple juice, including examining the effects of pH and possible synergistic effects with malic acid. Apple juice was adjusted to designated pH values of 3.2 to 9.0, supplemented with selected concentrations of BPB (≤125 ppm), inoculated with early-stationary-phase C. sakazakii 607, and thermally treated (58°C) for 15 min with a submerged coil apparatus. The same methods were used to study the enhancement of thermal inactivation by malic acid. Samples were plated on tryptic soy agar for recovery and enumeration. Survival curves were plotted, and D-values were calculated by linear regression and compared using the Tukey honestly significant difference test. BPB significantly enhanced thermal inactivation in a concentration dependent manner, with D-values of a few seconds at the original pH (3.8). The enhancement of thermal inactivation was pH dependent over the pH range of 3.4 to 9.0. Malic acid enhanced thermal inactivation; the pH was decreased from 3.8 to 3.2. These results support the hypothesis that BPB can enhance the thermal inactivation of C. sakazakii in low-protein and low-lipid foods.


Asunto(s)
Cronobacter sakazakii , Malus , Humanos , Lactante , Microbiología de Alimentos , Agar , Hidroxibenzoatos , Lípidos
5.
J Food Prot ; 85(8): 1133-1141, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588155

RESUMEN

ABSTRACT: In previous studies, parabens in model systems enhanced the thermal inactivation of foodborne pathogens, including Cronobacter sakazakii, Salmonella enterica serotype Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes. However, few studies have been conducted to evaluate this phenomenon in actual food systems. In the present study, the potential enhancement of thermal inactivation of C. sakazakii by butyl para-hydroxybenzoate (BPB) was evaluated in powdered infant formula (PIF) and nonfat dry milk (NFDM) in dry and rehydrated forms. When PIF was rehydrated with water at designated temperatures (65 to 80°C) in baby bottles, BPB did not enhance thermal inactivation. When rehydrated NFDM and lactose solutions with BPB were inoculated and heated at 58°C, BPB enhancement of thermal inactivation of C. sakazakii was negatively associated with the concentration of NFDM solutions in a dose-dependent manner, whereas thermal inactivation was enhanced in the presence of lactose regardless of its concentration, suggesting an interaction between proteins and BPB. Fluorescence testing further indicated an interaction between BPB and the proteins in PIF and NFDM. In inoculated dry NFDM with and without BPB stored at 24 and 55°C for 14 days, BPB did not substantially enhance bacterial inactivation. This study suggests that BPB is not likely to enhance mild thermal bacterial inactivation treatments in foods that have appreciable amounts of protein.


Asunto(s)
Cronobacter sakazakii , Animales , Fluidoterapia , Microbiología de Alimentos , Humanos , Hidroxibenzoatos , Lactante , Fórmulas Infantiles/microbiología , Lactosa , Leche/microbiología , Polvos
6.
Microorganisms ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35456741

RESUMEN

Subtyping of bacterial isolates of the same genus and species is an important tool in epidemiological investigations. A number of phenotypic and genotypic subtyping methods are available; however, most of these methods are labor-intensive and time-consuming and require considerable operator skill and a wealth of reagents. Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF), an alternative to conventional subtyping methods, offers a rapid, reproducible method for bacterial identification with a high sensitivity and specificity and at minimal cost. The purpose of this study was to determine the feasibility of using MALDI-TOF to differentiate between six Salmonella serovars recovered from experimental microcosms inoculated with known strains of Salmonella. Following the establishment of a MALDI-TOF reference library for this project, the identity of 843 Salmonella isolates recovered from these microcosms was assessed using both MALDI-TOF and conventional methods (serotyping/PCR). All 843 isolates were identified as being Salmonella species. Overall, 803/843 (95%) of these isolates were identified similarly using the two different methods. Positive percent agreement at the serovar level ranged from 79 to 100%, and negative percent agreement for all serovars was greater than 98%. Cohen's kappa ranged from 0.85 to 0.98 for the different serovars. This study demonstrates that MALDI-TOF is a viable alternative for the rapid identification and differentiation of Salmonella serovars.

7.
J Food Sci ; 86(6): 2569-2578, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34009638

RESUMEN

Heat-resistant foodborne pathogens have been a concern in low-moisture foods and ingredients (LMFs). Due to low thermal conductivity of low moisture materials, thermal treatment is not efficient and may cause nutritional loss. This study investigated the enhancement of thermal treatment of meat and bone meal (MBM) at low water activity (aw ) by inclusion of butylparaben (BP) as a model antimicrobial compound. Stationary phase Escherichia coli O157:H7 (Shiga toxin-negative) or Salmonella enterica serotype Typhimurium was inoculated into MBM containing 0-2000 ppm BP and incubated at 55 or 60°C for up to 5 hr. A biphasic inactivation pattern was observed for both pathogens, indicating existence of potentially thermal resistant subpopulations. Addition of 1000 ppm BP to MBM (aw  = 0.4) significantly lowered the D-value at 55°C for E. coli O157:H7 (2.6 ± 0.5 hr) compared to thermal treatment alone (5.1 ± 0.6 h) during the treatment after the first 1 hr (p < 0.05), indicating that addition of BP accelerated the inactivation of thermal-resistant subpopulation of E. coli O157:H7 in MBM. Interestingly, similar enhancement in thermal inactivation upon addition of BP was not observed in either the sensitive or resistant subpopulation of S. Typhimurium at aw of 0.4 or 0.7, which is likely caused by the higher thermal resistance developed by S. Typhimurium within a low aw environment (aw  < 0.85). These results suggest that addition of certain antimicrobial compounds can improve the thermal processing efficiency in LMFs, while their efficiency against different pathogens may vary. PRACTICAL APPLICATION: Addition of appropriate food-grade compounds may help to improve thermal treatment efficiency in low moisture foods with varied efficiency against different pathogens. This approach has the potential to reduce the required heat treatment intensity while minimizing food safety risk.


Asunto(s)
Escherichia coli O157/crecimiento & desarrollo , Calor , Carne/análisis , Minerales/análisis , Parabenos/farmacología , Salmonella typhimurium/crecimiento & desarrollo , Productos Biológicos/análisis , Recuento de Colonia Microbiana , Escherichia coli O157/efectos de los fármacos , Microbiología de Alimentos , Parabenos/química , Salmonella typhimurium/efectos de los fármacos
8.
J Food Prot ; 84(4): 545-552, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33159441

RESUMEN

ABSTRACT: Although high-temperature heat treatments can efficiently reduce pathogen levels, they also affect the quality and nutritional profile of foods and increase the cost of processing. The food additive butyl para-hydroxybenzoate (BPB) was investigated for its potential to synergistically enhance thermal microbial inactivation at mild heating temperatures (54 to 58°C). Four foodborne pathogenic bacteria, Cronobacter sakazakii, Salmonella enterica Typhimurium, attenuated Escherichia coli O157:H7, and Listeria monocytogenes, were cultured to early stationary phase and then subjected to mild heating at 58, 55, 57, and 54°C, respectively, in a model food matrix (brain heart infusion [BHI]) containing low concentrations of BPB (≤125 ppm). The temperature used with each bacterium was selected based on the temperature that would yield an approximately 1- to 3-log reduction over 15 min of heating in BHI without BPB in a submerged coil system. The inclusion of BPB at ≤125 ppm resulted in significant enhancement of thermal inactivation, achieving 5- to >6-log reductions of the gram-negative strains with D-values of <100 s. A 3- to 4-log reduction of L. monocytogenes was achieved with a similar treatment. No significant microbial inactivation was noted in the absence of mild heating for the same time period. This study provides additional proof of concept that low-temperature inactivation of foodborne pathogens can be realized by synergistic enhancement of thermal inactivation by additives that affect microbial cell membranes.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Recuento de Colonia Microbiana , Microbiología de Alimentos , Calefacción , Hidroxibenzoatos
9.
J Food Prot ; 83(8): 1420-1429, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32299095

RESUMEN

ABSTRACT: Domestic and wild animal intrusions are identified as a food safety risk during fresh produce production. The purpose of this study was to evaluate the survival of Shiga toxin-producing Escherichia coli (STEC) in cattle, feral pig, waterfowl, deer, and raccoon feces from sources in California, Delaware, Florida, and Ohio. Fecal samples were inoculated with a cocktail of rifampin-resistant STEC serotypes (O103, O104, O111, O145, and O157) (104 to 106 CFU/g of feces). Inoculated feces were held at ambient temperature. Populations of surviving cells were monitored throughout 1 year (364 days), with viable populations being enumerated by spread plating and enrichment when the bacteria were no longer detected by plating. Representative colonies were collected at various time intervals based on availability from different locations to determine the persistence of surviving STEC serotypes. Over the 364-day storage period, similar survival trends were observed for each type of animal feces from all states except for cattle and deer feces from Ohio. STEC populations remained the highest in cattle and deer feces from all states between days 28 and 364, except for those from Ohio. Feral pig, waterfowl, and raccoon feces had populations of STEC of <1.0 log CFU/g starting from day 112 in feces from all states. E. coli O103 and O104 were the predominant serotypes throughout the entire storage period in feces from all animals and from all states. The survival of both O157 and non-O157 STEC strains in domesticated and wild animal feces indicates a potential risk of contamination from animal intrusion.


Asunto(s)
Ciervos , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Animales Salvajes , Bovinos , Heces , Florida , Ohio
10.
J Food Sci ; 85(4): 870-882, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32144769

RESUMEN

Microgreens have gained increasing popularity as food ingredients in recent years because of their high nutritional value and diverse sensorial characteristics. Microgreens are edible seedlings including vegetables and herbs, which have been used, primarily in the restaurant industry, to embellish cuisine since 1996. The rapidly growing microgreen industry faces many challenges. Microgreens share many characteristics with sprouts, and while they have not been associated with any foodborne illness outbreaks, they have recently been the subject of seven recalls. Thus, the potential to carry foodborne pathogens is there, and steps can and should be taken during production to reduce the likelihood of such incidents. One major limitation to the growth of the microgreen industry is the rapid quality deterioration that occurs soon after harvest, which keeps prices high and restricts commerce to local sales. Once harvested, microgreens easily dehydrate, wilt, decay and rapidly lose certain nutrients. Research has explored preharvest and postharvest interventions, such as calcium treatments, modified atmopsphere packaging, temperature control, and light, to maintain quality, augment nutritional value, and extend shelf life. However, more work is needed to optimize both production and storage conditions to improve the safety, quality, and shelf life of microgreens, thereby expanding potential markets.


Asunto(s)
Inocuidad de los Alimentos , Plantones/química , Verduras/química , Almacenamiento de Alimentos , Humanos , Valor Nutritivo , Plantas/química
11.
Food Microbiol ; 89: 103412, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32138983

RESUMEN

Pre-harvest testing is increasingly used to enhance the microbial safety of fresh produce. Traditional sampling assumes that sample collectors have no information on potential contamination sources. Knowledge of such factors could potentially increase the effectiveness of pre-harvest sampling programs. Simulation modeling and field validation trials were used to evaluate a hybrid "Samples of Opportunity" (SOO) sampling method that included a portion of the samples based on the sampler's knowledge of risk factors in pre-harvest produce fields. Relative effectiveness of SOO sampling was compared with three traditional sampling methods. These evaluations were based on three non-random contamination scenarios. The mean detection probability of SOO is 96% higher than traditional sampling methods (p < 0.001). However, if the site of actual contamination is offset from assumed area of contamination, the detection probability of SOO sampling drops, and becomes similar or even worse than that achieved by the other sampling methods. Preliminary field validation trials indicated indeed that SOO performed better than the other three sampling methods. This study provides a mathematical approach for evaluating the effectiveness of four pre-harvest sampling methods, and suggests that having a priori knowledge of the contamination source in the field would improve effectiveness of sampling, particularly if done using a standardized protocol.


Asunto(s)
Bacterias/aislamiento & purificación , Simulación por Computador , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Probabilidad , Microbiología del Suelo
12.
J Food Prot ; 83(4): 651-660, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32221570

RESUMEN

ABSTRACT: Heightened concerns about wildlife on produce farms and possible introduction of pathogens to the food supply have resulted in required actions following intrusion events. The purpose of this study was to evaluate the survival of Salmonella in feces from cattle and various wild animals (feral pigs, waterfowl, deer, and raccoons) in California, Delaware, Florida, and Ohio. Feces were inoculated with rifampin-resistant Salmonella enterica cocktails that included six serotypes: Typhimurium, Montevideo, Anatum, Javiana, Braenderup, and Newport (104 to 106 CFU/g). Fecal samples were stored at ambient temperature. Populations were enumerated for up to 1 year (364 days) by spread plating onto tryptic soy agar supplemented with rifampin. When no colonies were detected, samples were enriched. Colonies were banked on various sampling days based on availability of serotyping in each state. During the 364-day storage period, Salmonella populations decreased to ≤2.0 log CFU/g by day 84 in pig, waterfowl, and raccoon feces from all states. Salmonella populations in cattle and deer feces were 3.3 to 6.1 log CFU/g on day 336 or 364; however, in Ohio Salmonella was not detected after 120 days. Salmonella serotypes Anatum, Braenderup, and Javiana were the predominant serotypes throughout the storage period in all animal feces and states. Determination of appropriate risk mitigation strategies following animal intrusions can improve our understanding of pathogen survival in animal feces.


Asunto(s)
Heces/microbiología , Contaminación de Alimentos/análisis , Salmonelosis Animal , Salmonella/crecimiento & desarrollo , Animales , Animales Salvajes , Bovinos , Ciervos , Florida , Microbiología de Alimentos , Ohio
13.
Microorganisms ; 7(10)2019 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-31569566

RESUMEN

This randomized controlled trial characterized the transfer of E. coli from animal feces and/or furrow water onto adjacent heads of lettuce during foliar irrigation, and the subsequent survival of bacteria on the adaxial surface of lettuce leaves. Two experiments were conducted in Salinas Valley, California: (1) to quantify the transfer of indicator E. coli from chicken and rabbit fecal deposits placed in furrows to surrounding lettuce heads on raised beds, and (2) to quantify the survival of inoculated E. coli on Romaine lettuce over 10 days. E. coli was recovered from 97% (174/180) of lettuce heads to a maximal distance of 162.56 cm (5.33 ft) from feces. Distance from sprinklers to feces, cumulative foliar irrigation, and lettuce being located downwind of the fecal deposit were positively associated, while distance from fecal deposit to lettuce was negatively associated with E. coli transference. E. coli exhibited decimal reduction times of 2.2 and 2.5 days when applied on the adaxial surface of leaves within a chicken or rabbit fecal slurry, respectively. Foliar irrigation can transfer E. coli from feces located in a furrow onto adjacent heads of lettuce, likely due to the kinetic energy of irrigation droplets impacting the fecal surface and/or impacting furrow water contaminated with feces, with the magnitude of E. coli enumerated per head of lettuce influenced by the distance between lettuce and the fecal deposit, cumulative application of foliar irrigation, wind aspect of lettuce relative to feces, and time since final irrigation. Extending the time period between foliar irrigation and harvest, along with a 152.4 cm (5 ft) no-harvest buffer zone when animal fecal material is present, may substantially reduce the level of bacterial contamination on harvested lettuce.

14.
Food Microbiol ; 77: 137-145, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30297044

RESUMEN

Recent outbreaks of foodborne disease associated with leafy greens have led to increased pre-harvest testing for pathogens and indicator microorganisms. However, the scientific and statistical rationale and the performance attributes for pre-harvest sampling methods are not well understood. The performance of three pre-harvest sampling methods, random, stratified random, and Z-pattern sampling, was evaluated by consideration of their mathematical derivations, computer simulations and field validation. Consideration of the probabilistic basis of the sampling methods indicated that the mean detection rates were similar. However, use of simulation modeling to assess the uncertainty associated with the three sampling methods indicated that the inherent variability of the Z-pattern sampling method was substantially greater than the other two sampling methods. A simulation tool was developed in Matlab that allowed the evaluation of the effectiveness of the three sampling methods. A limited validation study also observed that Z-pattern sampling had higher variability than the other two sampling methods. This study indicates that while the mean detection probabilities for the three sampling methods are similar, the random or stratified random sampling are less variable, particularly when the number of contamination sites or number of samples analyzed are small.


Asunto(s)
Bacterias/aislamiento & purificación , Contaminación de Alimentos/análisis , Microbiología de Alimentos/métodos , Hojas de la Planta/microbiología , Simulación por Computador , Enfermedades Transmitidas por los Alimentos , Modelos Teóricos , Probabilidad , Verduras/microbiología
15.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30054356

RESUMEN

Microbial horizontal gene transfer is a continuous process that shapes bacterial genomic adaptation to the environment and the composition of concurrent microbial ecology. This includes the potential impact of synthetic antibiotic utilization in farm animal production on overall antibiotic resistance issues; however, the mechanisms behind the evolution of microbial communities are not fully understood. We explored potential mechanisms by experimentally examining the relatedness of phylogenetic inference between multidrug-resistant Salmonella enterica serovar Typhimurium isolates and pathogenic Salmonella Typhimurium strains based on genome-wide single-nucleotide polymorphism (SNP) comparisons. Antibiotic-resistant S Typhimurium isolates in a simulated farm environment barely lost their resistance, whereas sensitive S Typhimurium isolates in soils gradually acquired higher tetracycline resistance under antibiotic pressure and manipulated differential expression of antibiotic-resistant genes. The expeditious development of antibiotic resistance and the ensuing genetic alterations in antimicrobial resistance genes in S Typhimurium warrant effective actions to control the dissemination of Salmonella antibiotic resistance.IMPORTANCE Antibiotic resistance is attributed to the misuse or overuse of antibiotics in agriculture, and antibiotic resistance genes can also be transferred to bacteria under environmental stress. In this study, we report a unidirectional alteration in antibiotic resistance from susceptibility to increased resistance. Highly sensitive Salmonella enterica serovar Typhimurium isolates from organic farm systems quickly acquired tetracycline resistance under antibiotic pressure in simulated farm soil environments within 2 weeks, with expression of antibiotic resistance-related genes that was significantly upregulated. Conversely, originally resistant S Typhimurium isolates from conventional farm systems lost little of their resistance when transferred to environments without antibiotic pressure. Additionally, multidrug-resistant S Typhimurium isolates genetically shared relevancy with pathogenic S Typhimurium isolates, whereas susceptible isolates clustered with nonpathogenic strains. These results provide detailed discussion and explanation about the genetic alterations and simultaneous acquisition of antibiotic resistance in S Typhimurium in agricultural environments.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Animales , Transferencia de Gen Horizontal , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos/genética , Plásmidos/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/clasificación , Salmonella typhimurium/aislamiento & purificación , Selección Genética , Microbiología del Suelo , Tetraciclina/farmacología
16.
Microbiol Spectr ; 5(4)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28752815

RESUMEN

The preharvest and preslaughter steps of food production constitute a first stage at which food can become contaminated with foodborne and toxigenic pathogens. Contamination at this early stage of food production can lead to amplification as food travels through the production and supply chain, accentuating the crucial need to address hazards and establish science-based metrics that are feasible to implement. This article discusses the preharvest food safety regulatory landscape in the United States, with a specific emphasis on fresh produce crops. Best practices, certification, audit schemes and challenges due to market channels, economies of scales, and grower behavior are considered in relation to the Food Safety Modernization Act. An outlook on the needs to facilitate implementation of the new law, develop educational programs for growers and stakeholders, and continue to better align food safety with environmental goals are presented.


Asunto(s)
Productos Agrícolas/química , Contaminación de Alimentos/legislación & jurisprudencia , Abastecimiento de Alimentos/legislación & jurisprudencia , Seguridad de Productos para el Consumidor/legislación & jurisprudencia , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/prevención & control , Humanos , Estados Unidos
17.
J Food Prot ; 80(1): 68-73, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28221878

RESUMEN

A recent study by the Centers for Disease Control and Prevention reported that between 1998 and 2008, leafy greens outbreaks accounted for 22.3% of foodborne outbreaks in the United States. Several studies on the growth of bacteria at different temperatures have been conducted; however, there is a need for the prediction of bacterial growth when leafy greens are transported without temperature control. Food products, when taken out of refrigeration, undergo a temperature change, with the rate of temperature change being proportional to the difference in the temperature of food and its surroundings. The objective of this study was to estimate the growth of Escherichia coli O157:H7, Salmonella enterica , and L. monocytogenes in leafy greens during transportation from retail to home at ambient temperatures ranging from 10 to 40°C for up to 10 h. Experiments were conducted to monitor the temperature increase in fresh spinach taken from refrigeration temperature to ambient temperature. The growth of pathogens was predicted using these changing temperature profiles with the three-phase linear model as a primary model and the square root model as the secondary model. The levels of E. coli O157:H7, S. enterica , and L. monocytogenes increased by 3.12, 2.43, and 3.42 log CFU at 40°C for the 10-h period, respectively, when no lag phase was assumed. If leafy greens are not kept out of refrigeration for more than 3 h, when the air temperature is 40°C or more, pathogen growth should be less than 1 log CFU. These results would assist in developing recommendations for food transportation without refrigeration.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Recuento de Colonia Microbiana , Microbiología de Alimentos , Salmonella , Temperatura
18.
J Food Prot ; 80(1): 189-197, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28221887

RESUMEN

Pathogens in soil are readily mobilized by infiltrating water to travel downward through the soil. However, limited data are available on the horizontal movement of pathogens across a field. This study used a model system to evaluate the influence of soil type, initial soil moisture content, and field slope on the movement of Salmonella enterica serovar Newport across a horizontal plane of soil under flooding conditions. Three soil types of varying clay content were moistened to 40, 60, or 80% of their maximum water-holding capacities and flooded with water containing 6 log CFU/ml Salmonella Newport and Citrobacter freundii , the latter being evaluated as a potential surrogate for S. enterica in future field trials. A two-phase linear regression was used to analyze the microbial populations recovered from soil with increasing distance from the flood. This model reflected the presence of lag distances followed by a quantifiable linear decrease in the population of bacteria as a function of the distance from the site of flooding. The magnitude of the lag distance was significantly affected by the soil type, but this was not attributable to the soil clay content. The rate of the linear decline with distance from the flood zone was affected by soil type, initial soil moisture content, and soil incline. As the initial soil moisture content increased, the rate of decline in recovery decreased, indicating greater bacterial transport through soils. When flooding was simulated at the bottom of the soil incline, the rate of decline in recovery was much greater than when flooding was simulated at the top of the incline. There was no significant difference in recovery between Salmonella Newport and C. freundii , indicating that C. freundii may be a suitable surrogate for Salmonella Newport in future field studies.


Asunto(s)
Salmonella enterica , Suelo , Citrobacter freundii , Microbiología del Suelo , Agua
19.
J Food Prot ; 80(2): 302-311, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28221978

RESUMEN

Leafy green vegetables, including lettuce, are recognized as potential vehicles for foodborne pathogens such as Escherichia coli O157:H7. Fresh-cut lettuce is potentially at high risk of causing foodborne illnesses, as it is generally consumed without cooking. Quantitative microbial risk assessments (QMRAs) are gaining more attention as an effective tool to assess and control potential risks associated with foodborne pathogens. This study developed a QMRA model for E. coli O157:H7 in fresh-cut lettuce and evaluated the effects of different potential intervention strategies on the reduction of public health risks. The fresh-cut lettuce production and supply chain was modeled from field production, with both irrigation water and soil as initial contamination sources, to consumption at home. The baseline model (with no interventions) predicted a mean probability of 1 illness per 10 million servings and a mean of 2,160 illness cases per year in the United States. All intervention strategies evaluated (chlorine, ultrasound and organic acid, irradiation, bacteriophage, and consumer washing) significantly reduced the estimated mean number of illness cases when compared with the baseline model prediction (from 11.4- to 17.9-fold reduction). Sensitivity analyses indicated that retail and home storage temperature were the most important factors affecting the predicted number of illness cases. The developed QMRA model provided a framework for estimating risk associated with consumption of E. coli O157:H7-contaminated fresh-cut lettuce and can guide the evaluation and development of intervention strategies aimed at reducing such risk.


Asunto(s)
Escherichia coli O157 , Lactuca , Recuento de Colonia Microbiana , Contaminación de Alimentos , Manipulación de Alimentos , Microbiología de Alimentos , Humanos , Medición de Riesgo
20.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27836846

RESUMEN

The majority of foodborne outbreaks in the United States associated with the consumption of leafy greens contaminated with Escherichia coli O157:H7 have been reported during the period of July to November. A dynamic system model consisting of subsystems and inputs to the system (soil, irrigation, cattle, wild pig, and rainfall) simulating a hypothetical farm was developed. The model assumed two crops of lettuce in a year and simulated planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. As predicted by the baseline model for crops harvested in different months from conventional fields, an estimated 13 out of 257 (5.05%) first crops harvested in July would have at least one plant with at least 1 CFU of E. coli O157:H7. Predictions indicate that no first crops would be contaminated with at least 1 CFU of E. coli O157:H7 for other months (April to June). The maximum E. coli O157:H7 concentration in a plant was higher in the second crop (27.10 CFU) than in the first crop (9.82 CFU). For the second crop, the probabilities of having at least one plant with at least 1 CFU of E. coli O157:H7 in a crop were predicted as 15/228 (6.6%), 5/333 (1.5%), 14/324 (4.3%), and 6/115 (5.2%) in August, September, October, and November, respectively. For organic fields, the probabilities of having at least one plant with ≥1 CFU of E. coli O157:H7 in a crop (3.45%) were predicted to be higher than those for the conventional fields (2.15%). IMPORTANCE: This study is the first attempt toward developing a mathematical system model to understand the pathway of E. coli O157:H7 in the production of leafy greens. Results of the presented system model indicate that the seasonality of outbreaks of E. coli O157:H7-associated contamination of leafy greens was in good agreement with the prevalence of this pathogen in cattle and wild pig feces in a major leafy greens-producing region in California. On the basis of comparisons among the results of different scenarios, it can be recommended that the concentration of E. coli O157:H7 in leafy greens can be reduced considerably if contamination of soil with wild pig and cattle feces is mitigated.


Asunto(s)
Escherichia coli O157/fisiología , Heces/microbiología , Microbiología de Alimentos , Lactuca/microbiología , Modelos Biológicos , Hojas de la Planta/microbiología , Microbiología del Suelo , Animales , California , Bovinos , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...