RESUMEN
Cardiac cell surface proteins are drug targets and useful biomarkers for discriminating among cellular phenotypes and disease states. Here we developed an analytical platform, CellSurfer, that enables quantitative cell surface proteome (surfaceome) profiling of cells present in limited quantities, and we apply it to isolated primary human heart cells. We report experimental evidence of surface localization and extracellular domains for 1,144 N-glycoproteins, including cell-type-restricted and region-restricted glycoproteins. We identified a surface protein specific for healthy cardiomyocytes, LSMEM2, and validated an anti-LSMEM2 monoclonal antibody for flow cytometry and imaging. Surfaceome comparisons among pluripotent stem cell derivatives and their primary counterparts highlighted important differences with direct implications for drug screening and disease modeling. Finally, 20% of cell surface proteins, including LSMEM2, were differentially abundant between failing and non-failing cardiomyocytes. These results represent a rich resource to advance development of cell type and organ-specific targets for drug delivery, disease modeling, immunophenotyping and in vivo imaging.
RESUMEN
Children that undergo intraocular surgery have an exaggerated postoperative response compared to adults that can result in significant postoperative challenges and reduced post-operative visual acuity. Rabbits were used as an animal model for investigating aging differences, treatment options, and surgical techniques for anterior chamber surgical interventions due to similarities in anterior chamber size and decreasing postoperative response with age. In our study, juvenile and adult rabbits underwent lensectomy with intraocular lens (IOL) insertion to determine how ocular RNA transcripts and proteins change with age. Rabbits underwent lensectomy with IOL insertion, and aqueous humor (AH) was collected immediately prior to surgery and at the peak of the postoperative response on post-operative day 3. Proteins related to coagulation and inflammation were assessed using targeted mass spectrometry. In addition, the cornea and iris/ciliary body tissues were dissected, and transcripts analyzed using RNA sequencing. While clinically, juvenile rabbits have greater fibrin formation following intraocular surgery compared to older rabbits, this change does not appear to be related to relative abundance levels of coagulation and inflammatory proteins in the AH. Gene transcript levels from a variety of immune response and inflammatory pathways reflected significant increases when comparing operated to unoperated ocular tissues, indicating the significant impact that surgery has on each ocular structure. This work further advances our understanding of how the rabbit eye proteomic and transcriptomic changes in response to surgery with aging, as we seek to ultimately identify the mechanisms for the exaggerated postoperative responses after pediatric intraocular surgery.
Asunto(s)
Lentes Intraoculares , Transcriptoma , Animales , Conejos , Proteómica , Cuerpo Ciliar , EnvejecimientoRESUMEN
Purpose: To investigate the use of tissue plasminogen activator (tPA) and its effects on the ocular proteome as a therapeutic intervention for postoperative inflammation and fibrin formation following intraocular lens (IOL) insertion in a juvenile rabbit model. Methods: Twenty-six rabbits, 6 to 7 weeks old, underwent lensectomy with IOL insertion. Following examination on day 3, 100 µL of either 25 µg of recombinant rabbit tPA or balanced salt solution (control) was injected into the anterior chamber. On postoperative day 4, rabbits underwent examination, and eyes were harvested and fixed for 9.4-Tesla magnetic resonance imaging (MRI). Three masked observers quantified fibrin scar volume using Horos Project software. Aqueous humor (AH) was collected immediately prior to surgery and on postoperative days 3 and 4. Proteins related to coagulation and inflammation were assessed in AH samples using targeted mass spectrometry via parallel reaction monitoring. Results: tPA significantly reduced the volume of fibrin 24 hours following administration compared with control eyes (0.560 mm3 vs. 3.29 mm3; P < 0.0001). Despite the reduced fibrin scar, proteins related to the coagulation and complement cascade were not significantly different following tPA injection. Conclusions: tPA may be a safe candidate for reduction of postoperative fibrin scarring after intraocular surgery. MRI can provide a quantitative value for fibrin volume changes. Translational Relevance: tPA is a candidate to treat ocular fibrin scarring. MRI can quantify the efficacy of treatments in future dose-response studies. Targeted mass spectrometry can provide critical data necessary to help decipher the effect on the abundance of targeted proteins following pharmacological intervention.
Asunto(s)
Fibrina , Activador de Tejido Plasminógeno , Animales , Cámara Anterior , Humor Acuoso , Proteoma , ConejosRESUMEN
Lower urinary tract symptoms (LUTS) is common in aging males. Disease etiology is largely unknown but likely includes inflammation and age-related changes in steroid hormones. Diagnosis is currently based on subjective symptom scores, and mainstay treatments can be ineffective and bothersome. Biomarker discovery efforts could facilitate objective diagnostic criteria for personalized medicine and new potential druggable pathways. To identify urine metabolite markers specific to hormone-induced bladder outlet obstruction, we applied our custom synthesized multiplex isobaric tags to monitor the development of bladder outlet obstruction across time in an experimental mouse model of LUTS. Mouse urine samples were collected before treatment and after 2, 4, and 8 weeks of steroid hormone treatment and subsequently analyzed by nanoflow ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. Accurate and high-throughput quantification of amine-containing metabolites was achieved by 12-plex DiLeu isobaric labeling. Metandem, a novel online software tool for large-scale isobaric labeling-based metabolomics, was used for identification and relative quantification of labeled metabolites. A total of 59 amine-containing metabolites were identified and quantified, 9 of which were changed significantly by the hormone treatment. Metabolic pathway analyses showed that three metabolic pathways were potentially disrupted. Among them, the arginine and proline metabolism pathway was significantly dysregulated both in this model and in a prior analysis of LUTS patient samples. Proline and citrulline were significantly changed in both samples and serve as attractive candidate biomarkers. The 12-plex DiLeu isobaric labeling with Metandem data processing presents an accessible and efficient workflow for an amine-containing metabolome study in biological specimens.
Asunto(s)
Aminas/orina , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Biomarcadores/orina , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Marcaje Isotópico , Síntomas del Sistema Urinario Inferior/orina , Masculino , Metaboloma/fisiología , Ratones , Ratones Endogámicos C57BLRESUMEN
Compared to adults, children experience increased postoperative scarring and inflammation following intraocular surgery. While the underlying causes of the exaggerated immune response in children are not understood, proteins play key roles in postoperative scarring and wound healing processes. To identify and quantify proteins associated with the robust postoperative immune response, this study applied quantitative proteomics approaches to a juvenile rabbit model of lensectomy with intraocular lens (IOL) insertion. Twenty-six 6-7 week-old New Zealand white rabbits underwent unilateral portions of lensectomy with IOL insertion including: anterior chamber paracentesis, corneal incision with wound suture, lensectomy only, and lensectomy with IOL insertion. Aqueous humor was collected immediately prior and three days after each procedure. Semi-quantitative protein discovery was achieved by label-free quantitation using data dependent and data independent acquisition modes. Based on the discovery results, targeted quantitation by parallel reaction monitoring of 3 proteins of interest, fibrinogen-beta chain, transforming growth factor beta-2, and retinol binding protein 3, was used to confirm the observed quantitative trends. Total protein concentration levels increased with each progressive surgical step of lensectomy with IOL insertion. Proteins related to the complement and coagulation cascades were found to increase in relative abundance, while proteins related to ocular immunosuppression decreased in abundance following surgery. These data provide insights into the postoperative response by providing the first surgical step-wise views of the AH proteome before and after surgery. Overall, this work provides the foundation for future investigations targeting specific proteins for therapeutic interventions aimed at minimizing postoperative complications after pediatric intraocular surgery.
Asunto(s)
Humor Acuoso/metabolismo , Inflamación/metabolismo , Implantación de Lentes Intraoculares/efectos adversos , Cristalino/cirugía , Proteómica/métodos , Animales , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Fibrinógeno/metabolismo , Inflamación/etiología , Masculino , Conejos , Proteínas de Unión al Retinol/metabolismo , Suturas/efectos adversos , Factor de Crecimiento Transformador beta2/metabolismo , Regulación hacia ArribaRESUMEN
Lower urinary tract symptoms (LUTS) are common among aging men. Since prostatic inflammation is one of its etiologies, it is plausible that urinary metabolite and protein biomarkers could be identified and used to diagnose inflammation-induced LUTS. We characterized the urine metabolome and proteome in a mouse model of bacterial-induced prostatic inflammation. Mass Spectrometry (MS)-based multi-omics analysis was employed to discover urinary protein and metabolite-based biomarkers. The investigation of isobaric dimethylated leucine (DiLeu) labeling on metabolites allowed metabolomics and proteomics analysis on the same liquid chromatography (LC)-MS platform. In total, 143 amine-containing metabolites and 1058 urinary proteins were identified and quantified (data are available via ProteomeXchange with identifier PXD018023); among them, 14 metabolites and 168 proteins were significantly changed by prostatic inflammation. Five metabolic pathways and four inflammation-related biological processes were potentially disrupted. By comparing our findings with urinary biomarkers identified in a mouse model of genetic-induced prostate inflammation and with those previously found to be associated with LUTS in older men, we identified creatine, haptoglobin, immunoglobulin kappa constant and polymeric Ig receptor as conserved biomarkers for prostatic inflammation associated with LUTS. These data suggest that these putative biomarkers could be used to identify men in which prostate inflammation is present and contributing to LUTS.
RESUMEN
We recently developed a novel amine-reactive mass-defect-based chemical tag, dimethyl pyrimidinyl ornithine (DiPyrO), for quantitative proteomic analysis at the MS1 level. In this work, we further extend the application of the DiPyrO tag, which provides amine group reactivity, optical detection capability, and improved electrospray sensitivity, to quantify N-linked glycans enzymatically released from glycoproteins in the glycosylamine form. Duplex DiPyrO tags that differ in mass by 45.3 mDa were used to label the glycosylamine moieties of freshly released N-glycosylamines from glycoprotein standards and human serum proteins. We demonstrate that both MALDI-LTQ-Orbitrap and nano-HILIC LC/MS/MS Fusion Lumos Orbitrap platforms are capable of resolving the singly or multiply charged N-glycans labeled with mass-defect DiPyrO tags. Dynamic range of quantification, based on MS1 peak intensities, was evaluated across 2 orders of magnitude. With optimized N-glycan release conditions, glycosylamine labeling conditions, and MS acquisition parameters, the N-glycan profiles and abundances in human serum proteins of cancer patients before and after chemotherapy were compared. Moreover, this study also opens a door for using well-developed amine-reactive tags for relative quantification of glycans, which could be widely applied.
Asunto(s)
Glicómica/métodos , Espectrometría de Masas/métodos , Ornitina/química , Polisacáridos/química , Polisacáridos/metabolismo , Antineoplásicos/uso terapéutico , Niño , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismoRESUMEN
Neuromodulators and neurotransmitters play important roles in neural network development. The quantitative changes of these signaling molecules often reflect their regulatory roles in physiological processes. Currently, several commercial tags (e.g., iTRAQ and TMT) have been widely used in proteomics. With reduced cost and higher labeling efficiency, we employed a set of custom-developed N, N-dimethyl leucine (DiLeu) 4-plex isobaric tandem mass tags as an attractive alternative for the relative quantitation of neuropeptides in brain tissue of American lobster Homarus americanus at multiple developmental stages. A general workflow for isobaric labeling of neuropeptides followed by LC-MS/MS analysis has been developed, including optimized sample handling procedures. Overall, we were able to quantify 18 trace-amount neuropeptides from 6 different families using a single adult brain as a control. The quantitation results indicated that the expressions of different neuropeptide families had significant changes over distinct developmental stages. Additionally, our data revealed intriguing elevated expression of neuropeptides in the early juvenile development stage. The methodology presented here advanced the workflow of DiLeu as an alternative labeling approach and the application of DiLeu-based quantitative peptidomics, which can be extended to areas beyond neuroscience.