Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131710

RESUMEN

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.

2.
Nat Commun ; 14(1): 2344, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095130

RESUMEN

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.


Asunto(s)
Encéfalo , Corteza Visual Primaria , Ratones , Animales , Encéfalo/fisiología , Biofisica
3.
Cell Rep ; 41(13): 111873, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577383

RESUMEN

Temporal lobe epilepsy is the fourth most common neurological disorder, with about 40% of patients not responding to pharmacological treatment. Increased cellular loss is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions, the impact of the disease at the cellular level remains unclear. Here, we show that hippocampal granule cells change with disease progression as measured in living, resected hippocampal tissue excised from patients with epilepsy. We show that granule cells increase excitability and shorten response latency while also enlarging in cellular volume and spine density. Single-nucleus RNA sequencing combined with simulations ascribes the changes to three conductances: BK, Cav2.2, and Kir2.1. In a network model, we show that these changes related to disease progression bring the circuit into a more excitable state, while reversing them produces a less excitable, "early-disease-like" state.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Hipocampo/patología , Epilepsia/patología , Neuronas/fisiología , Epilepsia del Lóbulo Temporal/patología , Simulación por Computador
5.
Cell Rep ; 40(6): 111176, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947954

RESUMEN

Which cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization workflow to generate 9,200 single-neuron models with active conductances. These models are based on 230 in vitro electrophysiological experiments followed by morphological reconstruction from the mouse visual cortex. We show that, in contrast to current belief, the generated models are robust representations of individual experiments and cortical cell types as defined via cellular electrophysiology or transcriptomics. Next, we show that differences in specific conductances predicted from the models reflect differences in gene expression supported by single-cell transcriptomics. The differences in model conductances, in turn, explain electrophysiological differences observed between the cortical subclasses. Our computational effort reconciles single-cell modalities that define cell types and enables causal relationships to be examined.


Asunto(s)
Transcriptoma , Corteza Visual , Animales , Fenómenos Electrofisiológicos , Electrofisiología , Ratones , Modelos Neurológicos , Neuronas/fisiología , Transcriptoma/genética , Corteza Visual/fisiología
7.
Nature ; 598(7879): 151-158, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616067

RESUMEN

The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer's disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


Asunto(s)
Ácido Glutámico/metabolismo , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Alzheimer , Animales , Forma de la Célula , Colágeno/metabolismo , Electrofisiología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Lisina/análogos & derivados , Masculino , Ratones , Neocórtex/anatomía & histología , Neuronas/clasificación , Técnicas de Placa-Clamp , Transcriptoma
8.
Neuron ; 100(5): 1194-1208.e5, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30392798

RESUMEN

Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single-cell/nucleus RNA sequencing revealed ubiquitous HCN1-subunit expression in excitatory neurons in human, but not mouse, supragranular layers. Using patch-clamp recordings, we found stronger h-channel-related membrane properties in supragranular pyramidal neurons in human temporal cortex, compared to mouse supragranular pyramidal neurons in temporal association area. The magnitude of these differences depended upon cortical depth and was largest in pyramidal neurons in deep L3. Additionally, pharmacologically blocking h-channels produced a larger change in membrane properties in human compared to mouse neurons. Finally, using biophysical modeling, we provide evidence that h-channels promote the transfer of theta frequencies from dendrite-to-soma in human L3 pyramidal neurons. Thus, h-channels contribute to between-species differences in a fundamental neuronal property.


Asunto(s)
Corteza Cerebral/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Potenciales de la Membrana , Canales de Potasio/fisiología , Células Piramidales/fisiología , Adulto , Animales , Membrana Celular/fisiología , Corteza Cerebral/metabolismo , Femenino , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Canales de Potasio/metabolismo , Células Piramidales/metabolismo , Especificidad de la Especie
9.
eNeuro ; 5(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30302390

RESUMEN

Pharmacoresistant epilepsy is a common neurological disorder in which increased neuronal intrinsic excitability and synaptic excitation lead to pathologically synchronous behavior in the brain. In the majority of experimental and theoretical epilepsy models, epilepsy is associated with reduced inhibition in the pathological neural circuits, yet effects of intrinsic excitability are usually not explicitly analyzed. Here we present a novel neural mass model that includes intrinsic excitability in the form of spike-frequency adaptation in the excitatory population. We validated our model using local field potential (LFP) data recorded from human hippocampal/subicular slices. We found that synaptic conductances and slow adaptation in the excitatory population both play essential roles for generating seizures and pre-ictal oscillations. Using bifurcation analysis, we found that transitions towards seizure and back to the resting state take place via Andronov-Hopf bifurcations. These simulations therefore suggest that single neuron adaptation as well as synaptic inhibition are responsible for orchestrating seizure dynamics and transition towards the epileptic state.


Asunto(s)
Adaptación Fisiológica/fisiología , Epilepsia/fisiopatología , Sistema Límbico/fisiopatología , Convulsiones/fisiopatología , Adolescente , Adulto , Electroencefalografía/métodos , Epilepsia/patología , Femenino , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Neuronas/fisiología , Convulsiones/patología , Adulto Joven
10.
J Neurosci ; 36(46): 11619-11633, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852771

RESUMEN

Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl- regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges. SIGNIFICANCE STATEMENT: Ion regulation in the brain is a major determinant of neural excitability. Intracellular chloride in neurons, a partial determinant of the resting potential and the inhibitory reversal potentials, is regulated together with extracellular potassium via kation chloride cotransporters. During temporal lobe epilepsy, the homeostatic regulation of intracellular chloride is impaired in pyramidal cells, yet how this dysregulation may lead to seizures has not been explored. Using a realistic neural network model describing ion mechanisms, we show that chloride homeostasis pathology provokes seizure activity analogous to recordings from epileptogenic brain tissue. We show that there is a critical percentage of pathological cells required for seizure initiation. Our model predicts that restoration of the chloride homeostasis in pyramidal cells could be a viable antiepileptic strategy.


Asunto(s)
Relojes Biológicos , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Modelos Neurológicos , Red Nerviosa/fisiopatología , Simportadores/metabolismo , Animales , Ondas Encefálicas , Simulación por Computador , Humanos , Activación del Canal Iónico , Cotransportadores de K Cl
11.
PLoS Comput Biol ; 12(8): e1005000, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27541958

RESUMEN

Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Células de Purkinje/citología , Células de Purkinje/fisiología , Animales , Biología Computacional , Ratas , Ratas Sprague-Dawley , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA