Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4996, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862527

RESUMEN

Assessing the impact of SARS-CoV-2 on organelle dynamics allows a better understanding of the mechanisms of viral replication. We combine label-free holotomographic microscopy with Artificial Intelligence to visualize and quantify the subcellular changes triggered by SARS-CoV-2 infection. We study the dynamics of shape, position and dry mass of nucleoli, nuclei, lipid droplets and mitochondria within hundreds of single cells from early infection to syncytia formation and death. SARS-CoV-2 infection enlarges nucleoli, perturbs lipid droplets, changes mitochondrial shape and dry mass, and separates lipid droplets from mitochondria. We then used Bayesian network modeling on organelle dry mass states to define organelle cross-regulation networks and report modifications of organelle cross-regulation that are triggered by infection and syncytia formation. Our work highlights the subcellular remodeling induced by SARS-CoV-2 infection and provides an Artificial Intelligence-enhanced, label-free methodology to study in real-time the dynamics of cell populations and their content.


Asunto(s)
Teorema de Bayes , COVID-19 , Gotas Lipídicas , Mitocondrias , SARS-CoV-2 , SARS-CoV-2/fisiología , Humanos , COVID-19/virología , COVID-19/metabolismo , Mitocondrias/metabolismo , Gotas Lipídicas/metabolismo , Gotas Lipídicas/virología , Inteligencia Artificial , Nucléolo Celular/metabolismo , Nucléolo Celular/virología , Replicación Viral , Núcleo Celular/metabolismo , Núcleo Celular/virología , Animales , Chlorocebus aethiops , Células Vero
2.
J Virol ; 98(5): e0169323, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563763

RESUMEN

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Asunto(s)
Vacunas contra la COVID-19 , Virus del Sarampión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Humanos , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Modelos Animales de Enfermedad , Vectores Genéticos , Vacuna Antisarampión/inmunología , Vacuna Antisarampión/genética , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
3.
Nat Commun ; 15(1): 2254, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480689

RESUMEN

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolate and characterize XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicate in IGROV-1 but no longer in Vero E6 and are not markedly fusogenic. They potently infect nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remain active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals are markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhances NAb responses against both XBB and BA.2.86 variants. JN.1 displays lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Células Epiteliales , Ejercicio Físico
4.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38045308

RESUMEN

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.

5.
J Virol ; 98(1): e0135123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38088562

RESUMEN

SARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and Spike functions. Around 1,100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its Spike. Compared to the ancestral Spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-N-terminal domain and anti-receptor-binding domain monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 Spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the Spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1. (This study has been registered at ClinicalTrials.gov under registration no. NCT04750720.)IMPORTANCEOur results highlight the plasticity of SARS-CoV-2 Spike to generate highly fusogenic and cytopathic strains with the causative mutations being uncharacterized in previous variants. We describe mechanisms regulating the formation of syncytia and the subsequent consequences in a primary culture model, which are poorly understood.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , África , COVID-19/virología , Pandemias , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Gigantes/virología
6.
Nature ; 624(7990): 207-214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879362

RESUMEN

Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.


Asunto(s)
Betacoronavirus , Receptores Virales , Serina Endopeptidasas , Glicoproteína de la Espiga del Coronavirus , Humanos , Betacoronavirus/metabolismo , Bronquios/citología , Bronquios/virología , Resfriado Común/tratamiento farmacológico , Resfriado Común/virología , Fusión de Membrana , Receptores Virales/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
7.
iScience ; 26(7): 107147, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37434700

RESUMEN

Interferon-induced transmembrane proteins (IFITMs) are restriction factors that block many viruses from entering cells. High levels of type I interferon (IFN) are associated with adverse pregnancy outcomes, and IFITMs have been shown to impair the formation of syncytiotrophoblast. Here, we examine whether IFITMs affect another critical step of placental development, extravillous cytotrophoblast (EVCT) invasion. We conducted experiments using in vitro/ex vivo models of EVCT, mice treated in vivo with the IFN-inducer poly (I:C), and human pathological placental sections. Cells treated with IFN-ß demonstrated upregulation of IFITMs and reduced invasive abilities. Transduction experiments confirmed that IFITM1 contributed to the decreased cell invasion. Similarly, migration of trophoblast giant cells, the mouse equivalent of human EVCTs, was significantly reduced in poly (I:C)-treated mice. Finally, analysis of CMV- and bacterial-infected human placentas revealed upregulated IFITM1 expression. These data demonstrate that high levels of IFITM1 impair trophoblast invasion and could explain the placental dysfunctions associated with IFN-mediated disorders.

8.
Cell Rep Med ; 3(12): 100850, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36450283

RESUMEN

The emergence of Omicron sublineages impacts the therapeutic efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs). Here, we evaluate neutralization and antibody-dependent cellular cytotoxicity (ADCC) activities of 6 therapeutic mAbs against Delta, BA.2, BA.4, and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to bebtelovimab and cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (imdevimab + casirivimab) or Evusheld (cilgavimab + tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos , Antivirales/uso terapéutico
9.
J Virol ; 96(19): e0130122, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121299

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained genetically stable during the first 3 months of the pandemic, before acquiring a D614G spike mutation that rapidly spread worldwide and then generating successive waves of viral variants with increasingly high transmissibility. We set out to evaluate possible epistatic interactions between the early-occurring D614G mutation and the more recently emerged cleavage site mutations present in spike of the Alpha, Delta, and Omicron variants of concern. The P681H/R mutations at the S1/S2 cleavage site increased spike processing and fusogenicity but limited its incorporation into pseudoviruses. In addition, the higher cleavage rate led to higher shedding of the spike S1 subunit, resulting in a lower infectivity of the P681H/R-carrying pseudoviruses compared to those expressing the Wuhan wild-type spike. The D614G mutation increased spike expression at the cell surface and limited S1 shedding from pseudovirions. As a consequence, the D614G mutation preferentially increased the infectivity of P681H/R-carrying pseudoviruses. This enhancement was more marked in cells where the endosomal route predominated, suggesting that more stable spikes could better withstand the endosomal environment. Taken together, these findings suggest that the D614G mutation stabilized S1/S2 association and enabled the selection of mutations that increased S1/S2 cleavage, leading to the emergence of SARS-CoV-2 variants expressing highly fusogenic spikes. IMPORTANCE The first SARS-CoV-2 variant that spread worldwide in early 2020 carried a D614G mutation in the viral spike, making this protein more stable in its cleaved form at the surface of virions. The Alpha and Delta variants, which spread in late 2020 and early 2021, respectively, proved increasingly transmissible and pathogenic compared to the original strain. Interestingly, Alpha and Delta both carried the mutations P681H/R in a cleavage site that made the spike more cleaved and more efficient at mediating viral fusion. We show here that variants with increased spike cleavage due to P681H/R were even more dependent on the stabilizing effect of the D614G mutation, which limited the shedding of cleaved S1 subunits from viral particles. These findings suggest that the worldwide spread of the D614G mutation was a prerequisite for the emergence of more pathogenic SARS-CoV-2 variants with highly fusogenic spikes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , COVID-19/virología , Humanos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética
10.
J Virol ; 96(14): e0060822, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35862713

RESUMEN

Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.


Asunto(s)
Quirópteros , SARS-CoV-2 , Replicación Viral , Enzima Convertidora de Angiotensina 2/genética , Animales , Quirópteros/virología , Humanos , Receptores Virales/metabolismo , SARS-CoV-2/fisiología , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
EBioMedicine ; 77: 103934, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35290827

RESUMEN

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral
12.
Nature ; 602(7898): 671-675, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016199

RESUMEN

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1-3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike-located mostly in the N-terminal domain and the receptor-binding domain-that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Evasión Inmune/inmunología , Inmunización Secundaria , SARS-CoV-2/inmunología , Adulto , Anticuerpos Monoclonales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , Bélgica , COVID-19/inmunología , COVID-19/transmisión , ChAdOx1 nCoV-19/administración & dosificación , ChAdOx1 nCoV-19/inmunología , Convalecencia , Femenino , Humanos , Masculino , Mutación , Pruebas de Neutralización , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Viaje
13.
Nat Commun ; 13(1): 521, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082297

RESUMEN

HIV elite controllers maintain a population of CD4 + T cells endowed with high avidity for Gag antigens and potent effector functions. How these HIV-specific cells avoid infection and depletion upon encounter with the virus remains incompletely understood. Ex vivo characterization of single Gag-specific CD4 + T cells reveals an advanced Th1 differentiation pattern in controllers, except for the CCR5 marker, which is downregulated compared to specific cells of treated patients. Accordingly, controller specific CD4 + T cells show decreased susceptibility to CCR5-dependent HIV entry. Two controllers carried biallelic mutations impairing CCR5 surface expression, indicating that in rare cases CCR5 downregulation can have a direct genetic cause. Increased expression of ß-chemokine ligands upon high-avidity antigen/TCR interactions contributes to autocrine CCR5 downregulation in controllers without CCR5 mutations. These findings suggest that genetic and functional regulation of the primary HIV coreceptor CCR5 play a key role in promoting natural HIV control.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Controladores de Élite , Infecciones por VIH/inmunología , VIH-1/inmunología , Receptores CCR5/metabolismo , Internalización del Virus , Quimiocinas , Regulación hacia Abajo , Regulación de la Expresión Génica , Productos del Gen gag/metabolismo , Infecciones por VIH/virología , Antígenos de Histocompatibilidad Clase II , Humanos , Mutación , Receptores CCR5/genética , Receptores CXCR3
14.
J Mol Biol ; 434(6): 167280, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34606831

RESUMEN

Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.


Asunto(s)
COVID-19 , Células Gigantes , Interferones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , COVID-19/inmunología , COVID-19/virología , Células Gigantes/virología , Humanos , Inmunidad Innata , Interferones/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética
15.
EMBO J ; 40(24): e108944, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34601723

RESUMEN

Severe COVID-19 is characterized by lung abnormalities, including the presence of syncytial pneumocytes. Syncytia form when SARS-CoV-2 spike protein expressed on the surface of infected cells interacts with the ACE2 receptor on neighboring cells. The syncytia forming potential of spike variant proteins remain poorly characterized. Here, we first assessed Alpha (B.1.1.7) and Beta (B.1.351) spread and fusion in cell cultures, compared with the ancestral D614G strain. Alpha and Beta replicated similarly to D614G strain in Vero, Caco-2, Calu-3, and primary airway cells. However, Alpha and Beta formed larger and more numerous syncytia. Variant spike proteins displayed higher ACE2 affinity compared with D614G. Alpha, Beta, and D614G fusion was similarly inhibited by interferon-induced transmembrane proteins (IFITMs). Individual mutations present in Alpha and Beta spikes modified fusogenicity, binding to ACE2 or recognition by monoclonal antibodies. We further show that Delta spike also triggers faster fusion relative to D614G. Thus, SARS-CoV-2 emerging variants display enhanced syncytia formation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/farmacología , Células Gigantes/virología , Mutación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Células HEK293 , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Células Vero , Replicación Viral/efectos de los fármacos
16.
C R Biol ; 344(2): 145-156, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34213852

RESUMEN

Pregnancy complications occur frequently and are particularly prevalent during the first trimester. They are caused by a multitude of factors, including karyotypic, genetic or environmental conditions, congenital infections and inflammation. The molecular mechanisms leading to placental complications under inflammatory conditions remain unclear. In this review, we discuss how uncontrolled inflammation, triggered by viral infections or other diseases can lead to placental complications. We first highlight the importance of syncytins, ancestral retroviral genes co-opted by mammals including humans, millions of years ago for the process of placenta formation. We then focus on recent advances elucidating how interferon-induced transmembrane (IFITM) proteins, antiviral proteins rendering cells refractory to viral infections, interfere with placental development.


Certaines grossesses s'accompagnent de complications et sont dites pathologiques, elles sont particulièrement prévalentes lors du premier trimestre. Celles-ci peuvent être causées par une multitude de facteurs, comme les anormalités caryotypiques, des facteurs génétiques et environnementaux, des infections congénitales et une sur-inflammation. Dans cette revue, nous examinons comment une inflammation incontrôlée, déclenchée par des infections virales ou d'autres maladies inflammatoires, peut entraîner des complications placentaires. Dans un premier temps, nous mettrons en évidence l'importance des syncytines, protéines d'enveloppe rétrovirales capturées par les mammifères, dont l'homme, dans la formation du placenta. Dans un deuxième temps, nous nous concentrons sur la manière dont des protéines cellulaires appelées « IFITM ¼ (interferon-induced transmembrane proteins), qui sont des protéines antivirales rendant les cellules réfractaires aux infections virales, interfèrent avec un mécanisme clé du développement placentaire.


Asunto(s)
Interferones , Complicaciones del Embarazo , Animales , Antivirales , Femenino , Humanos , Placenta , Placentación , Embarazo
17.
Nat Commun ; 12(1): 4582, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321470

RESUMEN

SAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic T592E mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.


Asunto(s)
Ciclo Celular/fisiología , VIH-1/fisiología , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Sumoilación/fisiología , Sustitución de Aminoácidos , Células HEK293 , Infecciones por VIH/virología , Humanos , Lisina , Mutación , Fosforilación , Proteína 1 que Contiene Dominios SAM y HD/química , Células U937
18.
Cell Rep Med ; 2(5): 100275, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33899033

RESUMEN

Many SARS-CoV-2-infected individuals remain asymptomatic. Little is known about the extent and quality of their antiviral humoral response. Here, we analyze antibody functions in 52 asymptomatic infected individuals, 119 mildly symptomatic, and 21 hospitalized patients with COVID-19. We measure anti-spike immunoglobulin G (IgG), IgA, and IgM levels with the S-Flow assay and map IgG-targeted epitopes with a Luminex assay. We also evaluate neutralization, complement deposition, and antibody-dependent cellular cytotoxicity (ADCC) using replication-competent SARS-CoV-2 or reporter cell systems. We show that COVID-19 sera mediate complement deposition and kill infected cells by ADCC. Sera from asymptomatic individuals neutralize the virus, activate ADCC, and trigger complement deposition. Antibody levels and functions are lower in asymptomatic individuals than they are in symptomatic cases. Antibody functions are correlated, regardless of disease severity. Longitudinal samplings show that antibody functions follow similar kinetics of induction and contraction. Overall, asymptomatic SARS-CoV-2 infection elicits polyfunctional antibodies neutralizing the virus and targeting infected cells.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/patología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Reacciones Antígeno-Anticuerpo , Enfermedades Asintomáticas , COVID-19/virología , Proteínas del Sistema Complemento/metabolismo , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Células Asesinas Naturales/inmunología , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad , Adulto Joven
19.
Nat Commun ; 12(1): 1864, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767144

RESUMEN

Extracellular vesicles (EVs), including exosomes, are thought to mediate intercellular communication through the transfer of cargoes from donor to acceptor cells. Occurrence of EV-content delivery within acceptor cells has not been unambiguously demonstrated, let alone quantified, and remains debated. Here, we developed a cell-based assay in which EVs containing luciferase- or fluorescent-protein tagged cytosolic cargoes are loaded on unlabeled acceptor cells. Results from dose-responses, kinetics, and temperature-block experiments suggest that EV uptake is a low yield process (~1% spontaneous rate at 1 h). Further characterization of this limited EV uptake, through fractionation of membranes and cytosol, revealed cytosolic release (~30% of the uptaken EVs) in acceptor cells. This release is inhibited by bafilomycin A1 and overexpression of IFITM proteins, which prevent virus entry and fusion. Our results show that EV content release requires endosomal acidification and suggest the involvement of membrane fusion.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Transporte Biológico/fisiología , Comunicación Celular/fisiología , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/metabolismo , Células HEK293 , Células HeLa , Humanos , Luciferasas/metabolismo , Macrólidos/farmacología , Fusión de Membrana/fisiología
20.
Nat Med ; 27(5): 917-924, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33772244

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 and B.1.351 variants were first identified in the United Kingdom and South Africa, respectively, and have since spread to many countries. These variants harboring diverse mutations in the gene encoding the spike protein raise important concerns about their immune evasion potential. Here, we isolated infectious B.1.1.7 and B.1.351 strains from acutely infected individuals. We examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus. We utilized a new rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection. Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean sixfold reduction in neutralizing titers, and 40% of the samples lacked any activity against B.1.351. Sera from 19 individuals vaccinated twice with Pfizer Cominarty, longitudinally tested up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Neutralizing titers increased after the second vaccine dose, but remained 14-fold lower against B.1.351. In contrast, sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay. Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Thus, faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, which was most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Convalecencia , Reacciones Cruzadas , Humanos , Pruebas de Neutralización , Sensibilidad y Especificidad , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA