RESUMEN
Despite the prevalence of N-heteroarenes in small-molecule pharmaceuticals, Pd-catalyzed C-N cross-coupling reactions of aryl halides and amines containing these rings remain challenging due to their ability to displace the supporting ligand via coordination to the metal center. To address this limitation, we report the development of a highly robust Pd catalyst supported by a new dialkylbiarylphosphine ligand, FPhos. The FPhos-supported catalyst effectively resists N-heteroarene-mediated catalyst deactivation to readily promote C-N coupling between a wide variety of Lewis-basic aryl halides and secondary amines, including densely functionalized pharmaceuticals. Mechanistic and structural investigations, as well as principal component analysis and density functional theory, elucidated two key design features that enable FPhos to overcome the limitations of previous ligands. First, the ligated Pd complex is stabilized through its conformational preference for the O-bound isomer, which likely resists coordination by N-heteroarenes. Second, 3',5'-disubstitution on the non-phosphorus-containing ring of FPhos creates the ideal steric environment around the Pd center, which facilitates binding by larger secondary amines while mitigating the formation of off-cycle palladacycle species.
RESUMEN
We report a mild method for the copper-catalyzed amination of aryl chlorides. Key to the success of the method was the use of highly sterically encumbered N1,N2-diaryl diamine ligands which resist catalyst deactivation, allowing reactions to proceed at significantly lower temperatures and with a broader scope than current protocols. A sequence of highly chemoselective C-N and C-O cross-coupling reactions were demonstrated, and mechanistic studies indicate that oxidative addition of the Cu catalyst to the aryl chlorides is rate-limiting. We anticipate that the design principles disclosed herein will help motivate further advances in Cu-catalyzed transformations of aryl chlorides.
RESUMEN
The utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use. They are designed to reveal the active, parent antibody only when encountering proteases upregulated in the microenvironment of the targeted disease tissue, thereby minimizing off-target activity. However, current pro-antibody designs are relegated to fusion proteins that append masking groups restricted to the use of only canonical amino acids, offering excellent control of the site of introduction, but with no authority over where the masking group is installed other than the N-terminus of the antibody. Here, we present a palladium-based bioconjugation approach for the site-specific introduction of a masked tyrosine mimic in the complementary determining region of the FDA approved antibody therapeutic ipilimumab used as a model system. The approach enables the introduction of a protease cleavable group tethered to noncanonical polymers (polyethylene glycol (PEG)) resulting in 47-fold weaker binding to cells expressing CTLA-4, the target antigen of ipilimumab. Upon exposure to tumor-associated proteases, the masking group is cleaved, unveiling a tyrosine-mimic (dubbed hydroxyphenyl cysteine (HPC)) that restores (>90% restoration) binding affinity to its target antigen.
Asunto(s)
Profármacos , Tirosina , Profármacos/química , Profármacos/farmacología , Humanos , Tirosina/química , Paladio/química , Estructura Molecular , Inmunoconjugados/químicaRESUMEN
We report a general and functional-group-tolerant method for the Cu-catalyzed amination of base-sensitive aryl bromides including substrates possessing acidic functional groups and small five-membered heteroarenes. The results presented herein substantially expand the scope of Cu-catalyzed C-N coupling reactions. The combination of L8, an anionic N1,N2-diarylbenzene-1,2-diamine ligand, along with the mild base NaOTMS leads to the formation of a stable yet reactive catalyst that resists deactivation from coordination to heterocycles or charged intermediates. This system enables the use of low catalyst and ligand loadings. Exploiting the differences in nucleophile deprotonation in C-O and C-N coupling reactions catalyzed by Cu·L8 we developed a method to chemoselectively N- and O-arylate a variety of amino alcohol substrates. Employing NaOt-Bu as the base resulted exclusively in C-O coupling when the amino alcohols featured primary alcohols and more hindered amines or aniline groups. Utilizing NaOTMS enabled the ability to override the steric-based selectivity of these reactions completely and exclusively promoted C-N coupling regardless of the structure of the amino alcohol. The ability to invert the observed chemoselectivity is distinct from previously described methods that require protecting group manipulations or rely entirely on steric effects to control reactivity. These results substantially improve the scope of Cu-catalyzed C-N coupling reactions using N1,N2-diarylbenzene-1,2-diamine ligands and introduce a new chemoselective method to arylate amino alcohols.
Asunto(s)
Amino Alcoholes , Cobre , Cobre/química , Catálisis , Aminación , Amino Alcoholes/química , Estructura Molecular , Bromuros/química , Hidrocarburos Bromados/química , LigandosRESUMEN
A highly enantioselective formal hydroformylation of vinyl arenes enabled by copper hydride (CuH) catalysis is reported. Key to the success of the method was the use of the mild Lewis acid zinc triflate to promote the formation of oxocarbenium electrophiles through the activation of diethoxymethyl acetate. Using the newly developed protocol, a broad range of vinyl arene substrates underwent efficient hydroacetalization reactions to provide access to highly enantioenriched α-aryl acetal products in good yields with exclusively branched regioselectivity. The acetal products could be converted to the corresponding aldehydes, alcohols, and amines with full preservation of the enantiomeric purity. Density functional theory studies support that the key C-C bond-forming event between the alkyl copper intermediate and the oxocarbenium electrophile takes place with inversion of configuration of the Cu-C bond in a backside SE2-type mechanism.
RESUMEN
We disclose the development of a Cu-catalyzed C-O coupling method utilizing a new N1,N2-diarylbenzene-1,2-diamine ligand, L8. Under optimized reaction conditions, structurally diverse aryl and heteroaryl bromides underwent efficient coupling with a variety of alcohols at room temperature using an L8-based catalyst. Notably, the L8-derived catalyst exhibited enhanced activity when compared to the L4-based system previously disclosed for C-N coupling, namely the ability to functionalize aryl bromides containing acidic functional groups. Mechanistic studies demonstrate that C-O coupling utilizing L8 â Cu involves rate-limiting alkoxide transmetallation, resulting in a mechanism of C-O bond formation that is distinct from previously described Pd-, Cu-, or Ni-based systems. This lower energy pathway leads to rapid C-O bond formation; a 7-fold increase relative to what is seen with other ligands. The results presented in this report overcome limitations in previously described C-O coupling methods and introduce a new ligand that we anticipate may be useful in other Cu-catalyzed C-heteroatom bond-forming reactions.
RESUMEN
Protein-protein interactions (PPIs) are intriguing targets in drug discovery and development. Peptides are well suited to target PPIs, which typically present with large surface areas lacking distinct features and deep binding pockets. To improve binding interactions with these topologies and advance the development of PPI-focused therapeutics, potential ligands can be equipped with electrophilic groups to enable binding through covalent mechanisms of action. We report a strategy termed electrophile scanning to identify reactivity hotspots in a known peptide ligand and demonstrate its application in a model PPI. Cysteine mutants of a known ligand are used to install protein-reactive modifiers via a palladium oxidative addition complex (Pd-OAC). Reactivity hotspots are revealed by cross-linking reactions with the target protein under physiological conditions. In a model PPI with the 9-mer peptide antigen VL9 and major histocompatibility complex (MHC) class I protein HLA-E, we identify two reactivity hotspots that afford up to 87% conversion to the protein-peptide conjugate within 4 h. The reactions are specific to the target protein in vitro and dependent on the peptide sequence. Moreover, the cross-linked peptide successfully inhibits molecular recognition of HLA-E by CD94-NKG2A possibly due to structural changes enacted at the PPI interface. The results illustrate the potential application of electrophile scanning as a tool for rapid discovery and development of covalent peptide binders.
Asunto(s)
Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Ligandos , Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/química , Unión ProteicaRESUMEN
Alkenes are ubiquitous in organic chemistry, yet many classes of alkenes remain challenging to access by current synthetic methodology. Herein, we report a copper hydride-catalyzed approach for the synthesis of Z-configured trisubstituted alkenes with high stereo- and regioselectivity via alkyne hydroalkylation. A DTBM-dppf-supported Cu catalyst was found to be optimal, providing a substantial increase in product yield compared to reactions conducted with dppf as the ligand. DFT calculations show that the DTBM substitution leads to the acceleration of alkyne hydrocupration through combined ground and transition state effects related to preventing catalyst dimerization and enhancing catalyst-substrate dispersion interactions, respectively. Alkyne hydroalkylation was successfully demonstrated with methyl and larger alkyl tosylate electrophiles to produce a variety of (hetero)aryl-substituted alkenes in moderate to high yields with complete selectivity for the Z stereochemically configured products. In the formation of the key C-C bond, computational studies revealed a direct SN2 pathway for alkylation of the vinylcopper intermediate with in situ-formed alkyl iodides.
RESUMEN
Encoding small-molecule information in DNA has been leveraged to accelerate the discovery of ligands for therapeutic targets such as proteins. However, oligonucleotide-based encoding is hampered by inherent limitations of information stability and density. In this study, we establish abiotic peptides for next-generation information storage and apply them for the encoding of diverse small-molecule synthesis. The chemical stability of the peptide-based tag allows the use of palladium-mediated reactions to efficiently synthesize peptide-encoded libraries (PELs) with broad chemical diversity and high purity. We demonstrate the successful de novo discovery of small-molecule protein ligands from PELs by affinity selection against carbonic anhydrase IX and the oncogenic protein targets BRD4(1) and MDM2. Collectively, this work establishes abiotic peptides as carriers of information for the encoding of small-molecule synthesis, leveraged herein for the discovery of protein ligands.
Asunto(s)
Descubrimiento de Drogas , Biblioteca de Péptidos , Péptidos , Bibliotecas de Moléculas Pequeñas , Ligandos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Péptidos/síntesis química , Péptidos/química , Factores de Transcripción/química , Factores de Transcripción/genética , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Estabilidad Proteica , Anhidrasa Carbónica IXRESUMEN
Ullmann-type C-N coupling reactions represent an important alternative to well-established Pd-catalyzed approaches due to the differing reactivity and the lower cost of Cu. While the design of anionic Cu ligands, particularly those by Ma, has enabled the coupling of various classes of aryl halides and alkyl amines, most methods require conditions that can limit their utility on complex substrates. Herein, we disclose the development of anionic N1,N2-diarylbenzene-1,2-diamine ligands that promote the Cu-catalyzed amination of aryl bromides under mild conditions. Guided by DFT calculations, these ligands were designed to (1) increase the electron density on Cu, thereby increasing the rate of oxidative addition of aryl bromides, and (2) stabilize the active anionic CuI complex via a π-interaction. Under optimized conditions, structurally diverse aryl and heteroaryl bromides and a broad range of alkyl amine nucleophiles, including pharmaceuticals bearing multiple functional groups, were efficiently coupled at room temperature. Combined computational and experimental studies support a mechanism of C-N bond formation that follows a catalytic cycle akin to the well-explored Pd-catalyzed variants. Modification of the ligand structure to include a naphthyl residue resulted in a lower energy barrier to oxidative addition, providing a 30-fold rate increase relative to what is seen with other ligands. Collectively, these results establish a new class of anionic ligands for Cu-catalyzed C-N couplings, which we anticipate may be extended to other Cu-catalyzed C-heteroatom and C-C bond-forming reactions.
RESUMEN
Pd-catalyzed nucleophilic fluorination reactions are important methods for the synthesis of fluoroarenes and fluoroalkenes. However, these reactions can generate a mixture of regioisomeric products that are often difficult to separate. While investigating the Pd-catalyzed fluorination of cyclic vinyl triflates, we observed that the addition of a substoichiometric quantity of TESCF3 significantly improved the regioselectivity of the reaction. Herein, we report a combined experimental and computational study on the mechanism of this transformation focusing on the role of TESCF3 . The poor regioselectivity of the reaction in the absence of additives results from the formation of LPd-cyclohexyne complexes (L=biaryl monophosphine ligand). When TESCF3 is added to the reaction mixture, the generation of the Pd-cyclohexyne complexes is diminished by an unexpected pathway involving the dearomatization of the ligand by nucleophilic attack from a trifluoromethyl anion (CF3 - ).
RESUMEN
We report a versatile and functional-group-tolerant method for the Pd-catalyzed C-N cross-coupling of five-membered heteroaryl halides with primary and secondary amines, an important but underexplored transformation. Coupling reactions of challenging, pharmaceutically relevant heteroarenes, such as 2-H-1,3-azoles, are reported in good-to-excellent yields. High-yielding coupling reactions of a wide set of five-membered heteroaryl halides with sterically demanding α-branched cyclic amines and acyclic secondary amines are reported for the first time. The key to the broad applicability of this method is the synergistic combination of (1) the moderate-strength base NaOTMS, which limits base-mediated decomposition of sensitive five-membered heteroarenes that ultimately leads to catalyst deactivation, and (2) the use of a GPhos-supported Pd catalyst, which effectively resists heteroarene-induced catalyst deactivation while promoting efficient coupling, even for challenging and sterically demanding amines. Cross-coupling reactions between a wide variety of five-membered heteroaryl halides and amines are demonstrated, including eight examples involving densely functionalized medicinal chemistry building blocks.
RESUMEN
The synthesis of palladium oxidative addition complexes derived from unprotected peptides is described. Incorporation of 4-halophenylalanine into a peptide during solid phase peptide synthesis allows for subsequent oxidative addition at this position upon treatment with a palladium precursor and suitable ligand. The resulting palladium-peptide complexes are solid, storable, water-soluble, and easily purified via high-performance liquid chromatography. These complexes react with thiols in aqueous buffer, offering an efficient method for bioconjugation. Using this strategy, peptides can be functionalized with small molecules to prepare modified aryl thioether side-chains at low micromolar concentrations. Additionally, peptide-peptide and peptide-protein ligations are demonstrated under dilute aqueous conditions.
RESUMEN
α-Stereogenic allyl metalloids are versatile synthetic intermediates which can undergo various stereocontrolled transformations. Most existing methods to prepare α-stereogenic allyl metalloids involve multi-step sequences that curtail the number of compatible substrates and are limited to the synthesis of boronates. Here, we report a general method for the enantioselective preparation of α-stereogenic allyl metalloids utilizing dual CuH- and Pd-catalysis. This approach leverages a stereoretentive Cu-to-Pd transmetalation of an in situ generated alkyl copper species to allow access to enantioenriched allyl silanes, germanes, and boronate esters with broad functional group compatibility.
Asunto(s)
Metaloides , Paladio , Silanos , Cobre , Ésteres , Estereoisomerismo , Estructura Molecular , CatálisisRESUMEN
The enantioselective installation of a methyl group onto a small molecule can result in the significant modification of its biological properties. While hydroalkylation of olefins represents an attractive approach to introduce alkyl substituents, asymmetric hydromethylation protocols are often hampered by the incompatibility of highly reactive methylating reagents and a lack of general applicability. Herein, we report an asymmetric olefin hydromethylation protocol enabled by CuH catalysis. This approach leverages methyl tosylate as a methyl source compatible with the reducing base-containing reaction environment, while a catalytic amount of iodide ion transforms the methyl tosylate in situ into the active reactant, methyl iodide, to promote the hydromethylation. This method tolerates a wide range of functional groups, heterocycles, and pharmaceutically relevant frameworks. Density functional theory studies suggest that after the stereoselective hydrocupration, the methylation step is stereoretentive, taking place through an SN2-type oxidative addition mechanism with methyl iodide followed by a reductive elimination.
Asunto(s)
Alquenos , Cobre , Bencenosulfonatos , Catálisis , Hidrocarburos Yodados , EstereoisomerismoRESUMEN
Catalyst transfer polymerization (CTP) is widely applied to the synthesis of well-defined π-conjugated polymers. Unlike other polymerization reactions that can be performed in water (e.g., controlled radical polymerizations and ring-opening polymerizations), CTP has yet to be adapted for the modification of biopolymers. Here, we report the use of protein-palladium oxidative addition complexes (OACs) that enable catalyst transfer polymerization to furnish protein-polyarene conjugates. These polymerizations occur with electron-deficient monomers in aqueous buffers open to air at mild (≤37 °C) temperatures with full conversion of the protein OAC and an average polymer length of nine repeating units. Proteins with polyarene chains terminated with palladium OACs can be readily isolated. Direct evidence of protein-polyarene OAC formation was obtained using mass spectrometry, and all protein-polyarene chain ends were uniformly functionalized via C-S arylation to terminate the polymerization with a small molecule thiol or a cysteine-containing protein.
Asunto(s)
Paladio , Proteínas , Paladio/química , Polimerizacion , Polímeros/química , Proteínas/química , Agua/químicaRESUMEN
The asymmetric hydroaminocarbonylation of olefins represents a straightforward approach for the synthesis of enantioenriched amides, but is hampered by the necessity to employ CO gas, often at elevated pressures. We herein describe, as an alternative, an enantioselective hydrocarbamoylation of alkenes leveraging dual copper hydride and palladium catalysis to enable the use of readily available carbamoyl chlorides as a practical carbamoylating reagent. The protocol is applicable to various types of olefins, including alkenyl arenes, terminal alkenes, and 1,1-disubstituted alkenes. Substrates containing a diverse range of functional groups as well as heterocyclic substructures undergo functionalization to provide α- and ß-chiral amides in good yields and with excellent enantioselectivities.
Asunto(s)
Alquenos , Paladio , Alquenos/química , Amidas/química , Catálisis , Estructura Molecular , Paladio/química , EstereoisomerismoRESUMEN
Carboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides. We demonstrate the ability of Pd-based reagents with appropriate ligands to overcome the high hydrophobicity of the carborane group and enable chemoselective conjugation of cysteine residues at room temperature in aqueous buffer. Accordingly, carboranes can be efficiently installed on proteins by employing a combination of a bis-sulfonated biarylphosphine-ligated Pd reagent in an aqueous histidine buffer. This method is successfully employed on nanobodies, a fully synthetic affibody, and the antibody therapeutics trastuzumab and cetuximab. The conjugates of the affibody ZHER2 and the trastuzumab antibody retained binding to their target antigens. Conjugated proteins maintain their activity in cell-based functional assays in HER2-positive BT-474 cell lines. This approach enables the rapid incorporation of carborane moieties into small molecules, peptides, and proteins for further exploration in boron neutron capture therapy, which requires the targeted delivery of boron-dense groups.