Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239947

RESUMEN

Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.


Drinking excessive amounts of alcohol during pregnancy can cause foetal alcohol spectrum disorder and other conditions in children that affect their physical and mental development. Many countries advise women who are pregnant or trying to conceive to avoid drinking alcohol entirely. However, surveys of large groups of women in Western countries indicate that most women continue drinking low to moderate amounts of alcohol until they discover they are pregnant and then stop consuming alcohol for the rest of their pregnancy. It remains unclear how this common drinking pattern affects the foetus. The instructions needed to build and maintain a human body are stored within molecules of DNA. Some regions of DNA called genes contain the instructions to make proteins, which perform many tasks in the body. Other so-called 'non-coding' regions do not code for any proteins but instead have roles in regulating gene activity. One way cells control which genes are switched on or off is adding or removing tags known as methyl groups to certain locations on DNA. Previous studies indicate that alcohol may affect how children develop by changing the patterns of methyl tags on DNA. To investigate the effect of moderate drinking during the early stages of pregnancy, Bestry et al. exposed pregnant mice to alcohol and examined how this affected the patterns of methyl tags on DNA in their offspring. The experiments found moderate levels of alcohol were sufficient to alter the patterns of methyl tags in the brains and livers of the newborn mice. Most of the changes were observed in non-coding regions of DNA, suggesting alcohol may affect how large groups of genes are regulated. Fewer changes in the patterns of methyl tags were found in mice whose mothers had diets rich in two essential nutrients known as folate and choline. Further experiments found that some of the affected mouse genes were similar to genes linked to foetal alcohol spectrum disorder and other related conditions in humans. These findings highlight the potential risks of consuming even moderate levels of alcohol during pregnancy and suggest that a maternal diet rich in folate and choline may help mitigate some of the harmful effects on the developing foetus.


Asunto(s)
Metilación de ADN , Efectos Tardíos de la Exposición Prenatal , Animales , Metilación de ADN/efectos de los fármacos , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ratones , Humanos , Dieta , Masculino , Etanol/efectos adversos , Etanol/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/metabolismo , Trastornos del Espectro Alcohólico Fetal/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/embriología
2.
Methods Mol Biol ; 2842: 391-403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012607

RESUMEN

DNA methylation is a covalent modification of DNA that plays important roles in processes such as the regulation of gene expression, transcription factor binding, and suppression of transposable elements. The use of whole-genome bisulfite sequencing (WGBS) enables the genome-wide identification and quantification of DNA methylation patterns at single-base resolution and is the gold standard for the analysis of DNA methylation. However, the computational analysis of WGBS data can be particularly challenging, as many computationally intensive steps are required. Here, we outline step-by-step an approach for the analysis and interpretation of WGBS data. First, sequencing reads must be trimmed, quality-checked, and aligned to the genome. Second, DNA methylation levels are estimated at each cytosine position using the aligned sequence reads of the bisulfite-treated DNA. Third, regions of differential cytosine methylation between samples can be identified. Finally, these data need to be visualized and interpreted in the context of the biological question at hand.


Asunto(s)
Metilación de ADN , Sulfitos , Secuenciación Completa del Genoma , Sulfitos/química , Secuenciación Completa del Genoma/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional/métodos , Programas Informáticos , Islas de CpG , ADN/genética , ADN/química , Genómica/métodos
3.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38837943

RESUMEN

Genomic information is increasingly used to inform medical treatments and manage future disease risks. However, any personal and societal gains must be carefully balanced against the risk to individuals contributing their genomic data. Expanding our understanding of actionable genomic insights requires researchers to access large global datasets to capture the complexity of genomic contribution to diseases. Similarly, clinicians need efficient access to a patient's genome as well as population-representative historical records for evidence-based decisions. Both researchers and clinicians hence rely on participants to consent to the use of their genomic data, which in turn requires trust in the professional and ethical handling of this information. Here, we review existing and emerging solutions for secure and effective genomic information management, including storage, encryption, consent, and authorization that are needed to build participant trust. We discuss recent innovations in cloud computing, quantum-computing-proof encryption, and self-sovereign identity. These innovations can augment key developments from within the genomics community, notably GA4GH Passports and the Crypt4GH file container standard. We also explore how decentralized storage as well as the digital consenting process can offer culturally acceptable processes to encourage data contributions from ethnic minorities. We conclude that the individual and their right for self-determination needs to be put at the center of any genomics framework, because only on an individual level can the received benefits be accurately balanced against the risk of exposing private information.


Asunto(s)
Genómica , Humanos , Genómica/métodos , Genómica/ética , Seguridad Computacional , Nube Computacional , Consentimiento Informado
4.
Diabetes Res Clin Pract ; 204: 110918, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37748713

RESUMEN

AIMS: To investigate epigenomic indices of diabetic kidney disease (DKD) susceptibility among high-risk populations with type 2 diabetes mellitus. METHODS: KDIGO (Kidney Disease: Improving Global Outcomes) clinical guidelines were used to classify people living with or without DKD. Differential gene methylation of DKD was then assessed in a discovery Aboriginal Diabetes Study cohort (PROPHECY, 89 people) and an external independent study from Thailand (THEPTARIN, 128 people). Corresponding mRNA levels were also measured and linked to levels of albuminuria and eGFR. RESULTS: Increased DKD risk was associated with reduced methylation and elevated gene expression in the PROPHECY discovery cohort of Aboriginal Australians and these findings were externally validated in the THEPTARIN diabetes registry of Thai people living with type 2 diabetes mellitus. CONCLUSIONS: Novel epigenomic scores can improve diagnostic performance over clinical modelling using albuminuria and GFR alone and can distinguish DKD susceptibility.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Albuminuria/complicaciones , Susceptibilidad a Enfermedades/complicaciones , Epigenómica , Australia , Riñón , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Biomarcadores , Tasa de Filtración Glomerular
5.
Nature ; 620(7975): 863-872, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587336

RESUMEN

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Células Madre Pluripotentes Inducidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilación del ADN , Metilación de ADN , Elementos Transponibles de ADN , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Lamina Tipo B
6.
Cell ; 185(23): 4428-4447.e28, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36318921

RESUMEN

Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.


Asunto(s)
Neurogénesis , Organoides , Embarazo , Femenino , Humanos , Adulto , Cromatina , Corteza Prefrontal , Análisis de la Célula Individual , Redes Reguladoras de Genes
7.
Genome Biol ; 23(1): 163, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883107

RESUMEN

BACKGROUND: Cytosine DNA methylation is widely described as a transcriptional repressive mark with the capacity to silence promoters. Epigenome engineering techniques enable direct testing of the effect of induced DNA methylation on endogenous promoters; however, the downstream effects have not yet been comprehensively assessed. RESULTS: Here, we simultaneously induce methylation at thousands of promoters in human cells using an engineered zinc finger-DNMT3A fusion protein, enabling us to test the effect of forced DNA methylation upon transcription, chromatin accessibility, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that transcriptional responses to DNA methylation are highly context-specific, including lack of repression, as well as cases of increased gene expression, which appears to be driven by the eviction of methyl-sensitive transcriptional repressors. Furthermore, we find that some regulatory networks can override DNA methylation and that promoter methylation can cause alternative promoter usage. DNA methylation deposited at promoter and distal regulatory regions is rapidly erased after removal of the zinc finger-DNMT3A fusion protein, in a process combining passive and TET-mediated demethylation. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II. CONCLUSIONS: These findings have important implications for epigenome engineering and demonstrate that the response of promoters to DNA methylation is more complex than previously appreciated.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Cromatina , Islas de CpG , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
8.
Nat Commun ; 12(1): 3015, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021136

RESUMEN

The role of microglia cells in Alzheimer's disease (AD) is well recognized, however their molecular and functional diversity remain unclear. Here, we isolated amyloid plaque-containing (using labelling with methoxy-XO4, XO4+) and non-containing (XO4-) microglia from an AD mouse model. Transcriptomics analysis identified different transcriptional trajectories in ageing and AD mice. XO4+ microglial transcriptomes demonstrated dysregulated expression of genes associated with late onset AD. We further showed that the transcriptional program associated with XO4+ microglia from mice is present in a subset of human microglia isolated from brains of individuals with AD. XO4- microglia displayed transcriptional signatures associated with accelerated ageing and contained more intracellular post-synaptic material than XO4+ microglia, despite reduced active synaptosome phagocytosis. We identified HIF1α as potentially regulating synaptosome phagocytosis in vitro using primary human microglia, and BV2 mouse microglial cells. Together, these findings provide insight into molecular mechanisms underpinning the functional diversity of microglia in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Fagocitosis/fisiología , Placa Amiloide/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Redes Reguladoras de Genes , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Placa Amiloide/genética , Transcriptoma
9.
Nat Ecol Evol ; 5(3): 369-378, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462491

RESUMEN

Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.


Asunto(s)
Metilación de ADN , Proteína 2 de Unión a Metil-CpG , Animales , Encéfalo/metabolismo , Genoma , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Vertebrados/genética
10.
Nature ; 586(7827): 101-107, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939092

RESUMEN

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Asunto(s)
Reprogramación Celular/genética , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Transcripción Genética
11.
Nat Neurosci ; 22(12): 2087-2097, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768052

RESUMEN

There is currently little information available about how individual cell types contribute to Alzheimer's disease. Here we applied single-nucleus RNA sequencing to entorhinal cortex samples from control and Alzheimer's disease brains (n = 6 per group), yielding a total of 13,214 high-quality nuclei. We detail cell-type-specific gene expression patterns, unveiling how transcriptional changes in specific cell subpopulations are associated with Alzheimer's disease. We report that the Alzheimer's disease risk gene APOE is specifically repressed in Alzheimer's disease oligodendrocyte progenitor cells and astrocyte subpopulations and upregulated in an Alzheimer's disease-specific microglial subopulation. Integrating transcription factor regulatory modules with Alzheimer's disease risk loci revealed drivers of cell-type-specific state transitions towards Alzheimer's disease. For example, transcription factor EB, a master regulator of lysosomal function, regulates multiple disease genes in a specific Alzheimer's disease astrocyte subpopulation. These results provide insights into the coordinated control of Alzheimer's disease risk genes and their cell-type-specific contribution to disease susceptibility. These results are available at http://adsn.ddnetbio.com.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Corteza Entorrinal/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Microglía/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Apolipoproteínas E/metabolismo , Atlas como Asunto , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Humanos , Masculino , Análisis de Secuencia de ARN , Regulación hacia Arriba
12.
Nat Ecol Evol ; 3(10): 1464-1473, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31558833

RESUMEN

Vertebrates have highly methylated genomes at CpG positions, whereas invertebrates have sparsely methylated genomes. This increase in methylation content is considered a major regulatory innovation of vertebrate genomes. However, here we report that a sponge, proposed as the potential sister group to the rest of animals, has a highly methylated genome. Despite major differences in genome size and architecture, we find similarities between the independent acquisitions of the hypermethylated state. Both lineages show genome-wide CpG depletion, conserved strong transcription factor methyl-sensitivity and developmental methylation dynamics at 5-hydroxymethylcytosine enriched regions. Together, our findings trace back patterns associated with DNA methylation in vertebrates to the early steps of animal evolution. Thus, the sponge methylome challenges previous hypotheses concerning the uniqueness of vertebrate genome hypermethylation and its implications for regulatory complexity.


Asunto(s)
Epigenoma , Poríferos , Animales , Metilación de ADN , Invertebrados , Vertebrados
13.
Nat Commun ; 9(1): 1811, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717194

RESUMEN

The original version of this Article contained an error in the spelling of the author Hongfei Li, which was incorrectly given as Fei Hong. This has now been corrected in both the PDF and HTML versions of the Article.

14.
Nat Commun ; 9(1): 1341, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29632298

RESUMEN

Transposable elements are in a constant arms race with the silencing mechanisms of their host genomes. One silencing mechanism commonly used by many eukaryotes is dependent on cytosine methylation, a covalent modification of DNA deposited by C5 cytosine methyltransferases (DNMTs). Here, we report how two distantly related eukaryotic lineages, dinoflagellates and charophytes, have independently incorporated DNMTs into the coding regions of distinct retrotransposon classes. Concomitantly, we show that dinoflagellates of the genus Symbiodinium have evolved cytosine methylation patterns unlike any other eukaryote, with most of the genome methylated at CG dinucleotides. Finally, we demonstrate the ability of retrotransposon DNMTs to methylate CGs de novo, suggesting that retrotransposons could self-methylate retrotranscribed DNA. Together, this is an example of how retrotransposons incorporate host-derived genes involved in DNA methylation. In some cases, this event could have implications for the composition and regulation of the host epigenomic environment.


Asunto(s)
Carofíceas/enzimología , Carofíceas/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Dinoflagelados/enzimología , Dinoflagelados/genética , Retroelementos , Metilación de ADN/genética , Epigénesis Genética , Evolución Molecular , Silenciador del Gen , Filogenia
15.
Methods Mol Biol ; 1767: 299-310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29524143

RESUMEN

DNA methylation is a covalent modification of DNA that plays important roles in processes such as the regulation of gene expression, transcription factor binding, and suppression of transposable elements. The use of whole genome bisulfite sequencing (WGBS) enables the genome-wide identification and quantification of DNA methylation patterns at single-base resolution and is the gold standard for analysis of DNA methylation. Computational analysis of WGBS data can be particularly challenging, as many computationally intensive steps are required. Here, we outline a step-by-step approach for the analysis and interpretation of WGBS data. First, sequencing reads must be trimmed, quality checked, and aligned to the genome. Second, DNA methylation levels are estimated at each cytosine position using the aligned sequence reads of the bisulfite treated DNA. Third, regions of differential cytosine methylation between samples can be identified. Finally, these data need to be visualized and interpreted in the context of the biological question at hand.


Asunto(s)
Metilación de ADN , Programas Informáticos , Secuenciación Completa del Genoma/métodos , Animales , ADN/análisis , ADN/genética , Genómica/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Sulfitos/química
16.
Sci Rep ; 8(1): 2190, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391490

RESUMEN

Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).


Asunto(s)
Biología Computacional/métodos , Metilación de ADN , Enzimas de Restricción del ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Próstata/metabolismo , Programas Informáticos , Algoritmos , Animales , Enzimas de Restricción del ADN/metabolismo , Epigenómica , Genoma , Masculino , Ratas
17.
Cell Stem Cell ; 21(6): 834-845.e6, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220667

RESUMEN

Somatic cell reprogramming into induced pluripotent stem cells (iPSCs) induces changes in genome architecture reflective of the embryonic stem cell (ESC) state. However, only a small minority of cells typically transition to pluripotency, which has limited our understanding of the process. Here, we characterize the DNA regulatory landscape during reprogramming by time-course profiling of isolated sub-populations of intermediates poised to become iPSCs. Widespread reconfiguration of chromatin states and transcription factor (TF) occupancy occurs early during reprogramming, and cells that fail to reprogram partially retain their original chromatin states. A second wave of reconfiguration occurs just prior to pluripotency acquisition, where a majority of early changes revert to the somatic cell state and many of the changes that define the pluripotent state become established. Our comprehensive characterization of reprogramming-associated molecular changes broadens our understanding of this process and sheds light on how TFs access and change the chromatin during cell-fate transitions.


Asunto(s)
Reprogramación Celular , Cromatina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/metabolismo , Animales , Reprogramación Celular/genética , Cromatina/genética , Femenino , Células Madre Pluripotentes Inducidas/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factores de Transcripción/genética
18.
Cell Rep ; 21(10): 2649-2660, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212013

RESUMEN

Our current understanding of induced pluripotent stem cell (iPSC) generation has almost entirely been shaped by studies performed on reprogramming fibroblasts. However, whether the resulting model universally applies to the reprogramming process of other cell types is still largely unknown. By characterizing and profiling the reprogramming pathways of fibroblasts, neutrophils, and keratinocytes, we unveil that key events of the process, including loss of original cell identity, mesenchymal to epithelial transition, the extent of developmental reversion, and reactivation of the pluripotency network, are to a large degree cell-type specific. Thus, we reveal limitations for the use of fibroblasts as a universal model for the study of the reprogramming process and provide crucial insights about iPSC generation from alternative cell sources.


Asunto(s)
Fibroblastos/citología , Neutrófilos/citología , Animales , Reprogramación Celular/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Fibroblastos/fisiología , Citometría de Flujo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Queratinocitos/citología , Queratinocitos/fisiología , Neutrófilos/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
19.
Sci Rep ; 7(1): 15137, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123159

RESUMEN

Zinc is an essential micronutrient in pregnancy and zinc deficiency impairs fetal growth. We used a mouse model of moderate zinc deficiency to investigate the physiological mechanisms by which zinc is important to placental morphogenesis and the maternal blood pressure changes during pregnancy. A 26% reduction in circulating zinc (P = 0.005) was exhibited in mice fed a moderately zinc-deficient diet. Zinc deficiency in pregnancy resulted in an 8% reduction in both near term fetal and placental weights (both P < 0.0001) indicative of disrupted placental development and function. Detailed morphological analysis confirmed changes to the placental labyrinth microstructure. Continuous monitoring of maternal mean arterial pressure (MAP) revealed a late gestation decrease in the zinc-deficient dams. Differential expression of a number of regulatory genes within maternal kidneys supported observations on MAP changes in gestation. Increased MAP late in gestation is required to maintain perfusion of multiple placentas within rodent pregnancies. Decreased MAP within the zinc-deficient dams implies reduced blood flow and nutrient delivery to the placenta. These findings show that adequate zinc status is required for correct placental morphogenesis and appropriate maternal blood pressure adaptations to pregnancy. We conclude that insufficient maternal zinc intake from before and during pregnancy is likely to impact in utero programming of offspring growth and development largely through effects to the placenta and maternal cardiovascular system.


Asunto(s)
Hemodinámica/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Placenta/fisiología , Placentación/efectos de los fármacos , Oligoelementos/metabolismo , Zinc/metabolismo , Animales , Dieta/métodos , Femenino , Ratones , Embarazo , Oligoelementos/administración & dosificación , Zinc/administración & dosificación
20.
Cell Rep ; 20(6): 1448-1462, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793267

RESUMEN

We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs.


Asunto(s)
Células Madre Embrionarias/citología , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Defectos del Tubo Neural/genética , Tubo Neural/embriología , Línea Celular , Metilación de ADN , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...