Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
PLoS Pathog ; 20(6): e1012013, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38870266

RESUMEN

Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. In low transmission settings, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. We performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n = 1,409) through estimation of identity-by-descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 multi-isolate clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally observed 61 nonsynonymous substitutions that increased markedly in frequency over the study period as well as a novel pfk13 mutation (G718S). However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions, given that clones carrying drug resistance polymorphisms do not demonstrate enhanced persistence or higher abundance than clones carrying polymorphisms of comparable frequency that are unrelated to resistance. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Guyana , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Malaria Falciparum/tratamiento farmacológico , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mutación , Proteínas Protozoarias/genética
2.
Trop Med Int Health ; 29(6): 466-476, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740040

RESUMEN

OBJECTIVE: Mathematical models are vital tools to understand transmission dynamics and assess the impact of interventions to mitigate COVID-19. However, historically, their use in Africa has been limited. In this scoping review, we assess how mathematical models were used to study COVID-19 vaccination to potentially inform pandemic planning and response in Africa. METHODS: We searched six electronic databases: MEDLINE, Embase, Web of Science, Global Health, MathSciNet and Africa-Wide NiPAD, using keywords to identify articles focused on the use of mathematical modelling studies of COVID-19 vaccination in Africa that were published as of October 2022. We extracted the details on the country, author affiliation, characteristics of models, policy intent and heterogeneity factors. We assessed quality using 21-point scale criteria on model characteristics and content of the studies. RESULTS: The literature search yielded 462 articles, of which 32 were included based on the eligibility criteria. Nineteen (59%) studies had a first author affiliated with an African country. Of the 32 included studies, 30 (94%) were compartmental models. By country, most studies were about or included South Africa (n = 12, 37%), followed by Morocco (n = 6, 19%) and Ethiopia (n = 5, 16%). Most studies (n = 19, 59%) assessed the impact of increasing vaccination coverage on COVID-19 burden. Half (n = 16, 50%) had policy intent: prioritising or selecting interventions, pandemic planning and response, vaccine distribution and optimisation strategies and understanding transmission dynamics of COVID-19. Fourteen studies (44%) were of medium quality and eight (25%) were of high quality. CONCLUSIONS: While decision-makers could draw vital insights from the evidence generated from mathematical modelling to inform policy, we found that there was limited use of such models exploring vaccination impacts for COVID-19 in Africa. The disparity can be addressed by scaling up mathematical modelling training, increasing collaborative opportunities between modellers and policymakers, and increasing access to funding.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Política de Salud , Modelos Teóricos , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , COVID-19/transmisión , África/epidemiología , SARS-CoV-2 , Vacunación/estadística & datos numéricos
3.
Ann Glob Health ; 90(1): 22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523847

RESUMEN

Background: Mathematical modeling of infectious diseases is an important decision-making tool for outbreak control. However, in Africa, limited expertise reduces the use and impact of these tools on policy. Therefore, there is a need to build capacity in Africa for the use of mathematical modeling to inform policy. Here we describe our experience implementing a mathematical modeling training program for public health professionals in East Africa. Methods: We used a deliverable-driven and learning-by-doing model to introduce trainees to the mathematical modeling of infectious diseases. The training comprised two two-week in-person sessions and a practicum where trainees received intensive mentorship. Trainees evaluated the content and structure of the course at the end of each week, and this feedback informed the strategy for subsequent weeks. Findings: Out of 875 applications from 38 countries, we selected ten trainees from three countries - Rwanda (6), Kenya (2), and Uganda (2) - with guidance from an advisory committee. Nine trainees were based at government institutions and one at an academic organization. Participants gained skills in developing models to answer questions of interest and critically appraising modeling studies. At the end of the training, trainees prepared policy briefs summarizing their modeling study findings. These were presented at a dissemination event to policymakers, researchers, and program managers. All trainees indicated they would recommend the course to colleagues and rated the quality of the training with a median score of 9/10. Conclusions: Mathematical modeling training programs for public health professionals in Africa can be an effective tool for research capacity building and policy support to mitigate infectious disease burden and forecast resources. Overall, the course was successful, owing to a combination of factors, including institutional support, trainees' commitment, intensive mentorship, a diverse trainee pool, and regular evaluations.


Asunto(s)
Enfermedades Transmisibles , Humanos , Kenia , Rwanda , Uganda , Enfermedades Transmisibles/epidemiología , Toma de Decisiones
4.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352461

RESUMEN

Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. However, in low transmission settings where most mosquitoes become infected with only a single parasite clone, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. To investigate whether this clonality was potentially associated with the persistence and spatial spread of the mutation, we performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n=1,409) through estimation of identity by descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally report polymorphisms exhibiting evidence of selection for drug resistance or other phenotypes and reported a novel pfk13 mutation (G718S) as well as 61 nonsynonymous substitutions that increased markedly in frequency. However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.

5.
PLOS Digit Health ; 2(10): e0000233, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37889905

RESUMEN

During the COVID-19 pandemic, the use of mobile phone data for monitoring human mobility patterns has become increasingly common, both to study the impact of travel restrictions on population movement and epidemiological modeling. Despite the importance of these data, the use of location information to guide public policy can raise issues of privacy and ethical use. Studies have shown that simple aggregation does not protect the privacy of an individual, and there are no universal standards for aggregation that guarantee anonymity. Newer methods, such as differential privacy, can provide statistically verifiable protection against identifiability but have been largely untested as inputs for compartment models used in infectious disease epidemiology. Our study examines the application of differential privacy as an anonymisation tool in epidemiological models, studying the impact of adding quantifiable statistical noise to mobile phone-based location data on the bias of ten common epidemiological metrics. We find that many epidemiological metrics are preserved and remain close to their non-private values when the true noise state is less than 20, in a count transition matrix, which corresponds to a privacy-less parameter ϵ = 0.05 per release. We show that differential privacy offers a robust approach to preserving individual privacy in mobility data while providing useful population-level insights for public health. Importantly, we have built a modular software pipeline to facilitate the replication and expansion of our framework.

6.
BMJ Open ; 13(3): e061840, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882240

RESUMEN

OBJECTIVES: Convenience sampling is an imperfect but important tool for seroprevalence studies. For COVID-19, local geographic variation in cases or vaccination can confound studies that rely on the geographically skewed recruitment inherent to convenience sampling. The objectives of this study were: (1) quantifying how geographically skewed recruitment influences SARS-CoV-2 seroprevalence estimates obtained via convenience sampling and (2) developing new methods that employ Global Positioning System (GPS)-derived foot traffic data to measure and minimise bias and uncertainty due to geographically skewed recruitment. DESIGN: We used data from a local convenience-sampled seroprevalence study to map the geographic distribution of study participants' reported home locations and compared this to the geographic distribution of reported COVID-19 cases across the study catchment area. Using a numerical simulation, we quantified bias and uncertainty in SARS-CoV-2 seroprevalence estimates obtained using different geographically skewed recruitment scenarios. We employed GPS-derived foot traffic data to estimate the geographic distribution of participants for different recruitment locations and used this data to identify recruitment locations that minimise bias and uncertainty in resulting seroprevalence estimates. RESULTS: The geographic distribution of participants in convenience-sampled seroprevalence surveys can be strongly skewed towards individuals living near the study recruitment location. Uncertainty in seroprevalence estimates increased when neighbourhoods with higher disease burden or larger populations were undersampled. Failure to account for undersampling or oversampling across neighbourhoods also resulted in biased seroprevalence estimates. GPS-derived foot traffic data correlated with the geographic distribution of serosurveillance study participants. CONCLUSIONS: Local geographic variation in seropositivity is an important concern in SARS-CoV-2 serosurveillance studies that rely on geographically skewed recruitment strategies. Using GPS-derived foot traffic data to select recruitment sites and recording participants' home locations can improve study design and interpretation.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Estudios Transversales , Estudios Seroepidemiológicos , Simulación por Computador
8.
Trends Parasitol ; 39(1): 17-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435688

RESUMEN

Genomic epidemiology has guided research and policy for various viral pathogens and there has been a parallel effort towards using genomic epidemiology to combat diseases that are caused by eukaryotic pathogens, such as the malaria parasite. However, the central concept of viral genomic epidemiology, namely that of measurably mutating pathogens, does not apply easily to sexually recombining parasites. Here we introduce the related but different concept of measurably recombining malaria parasites to promote convergence around a unifying theoretical framework for malaria genomic epidemiology. Akin to viral phylodynamics, we anticipate that an inferential framework developed around recombination will help guide practical research and thus realize the full public health potential of genomic epidemiology for malaria parasites and other sexually recombining pathogens.


Asunto(s)
Malaria , Parásitos , Animales , Humanos , Malaria/epidemiología , Malaria/prevención & control , Genómica , Eucariontes
9.
PLoS Pathog ; 18(12): e1010993, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542676

RESUMEN

The human malaria parasite Plasmodium falciparum is globally widespread, but its prevalence varies significantly between and even within countries. Most population genetic studies in P. falciparum focus on regions of high transmission where parasite populations are large and genetically diverse, such as sub-Saharan Africa. Understanding population dynamics in low transmission settings, however, is of particular importance as these are often where drug resistance first evolves. Here, we use the Pacific Coast of Colombia and Ecuador as a model for understanding the population structure and evolution of Plasmodium parasites in small populations harboring less genetic diversity. The combination of low transmission and a high proportion of monoclonal infections means there are few outcrossing events and clonal lineages persist for long periods of time. Yet despite this, the population is evolutionarily labile and has successfully adapted to changes in drug regime. Using newly sequenced whole genomes, we measure relatedness between 166 parasites, calculated as identity by descent (IBD), and find 17 distinct but highly related clonal lineages, six of which have persisted in the region for at least a decade. This inbred population structure is captured in more detail with IBD than with other common population structure analyses like PCA, ADMIXTURE, and distance-based trees. We additionally use patterns of intra-chromosomal IBD and an analysis of haplotypic variation to explore past selection events in the region. Two genes associated with chloroquine resistance, crt and aat1, show evidence of hard selective sweeps, while selection appears soft and/or incomplete at three other key resistance loci (dhps, mdr1, and dhfr). Overall, this work highlights the strength of IBD analyses for studying parasite population structure and resistance evolution in regions of low transmission, and emphasizes that drug resistance can evolve and spread in small populations, as will occur in any region nearing malaria elimination.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Animales , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , América del Sur/epidemiología
10.
PLoS Negl Trop Dis ; 16(11): e0010828, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36409773

RESUMEN

Currently available drugs against Trypanosoma cruzi infection, which causes 12000 deaths annually, have limitations in their efficacy, safety and tolerability. The evaluation of therapeutic responses to available and new compounds is based on parasite detection in the bloodstream but remains challenging because a substantial proportion of infected individuals have undetectable parasitemia even when using diagnostic tools with the highest accuracy. We characterize parasite dynamics which might impact drug efficacy assessments in chronic Chagas by analyzing pre- and post-treatment quantitative-PCR data obtained from blood samples collected regularly over a year. We show that parasitemia remains at a steady-state independently of the diagnostic sensitivity. This steady-state can be probabilistically quantified and robustly predicted at an individual level. Furthermore, individuals can be assigned to categories with distinct parasitological status, allowing a more detailed evaluation of the efficacy outcomes and adjustment for potential biases. Our analysis improves understanding of parasite dynamics and provides a novel background for optimizing future drug efficacy trials in Chagas disease. Trial Registration: original trial registered with ClinicalTrials.gov, number NCT01489228.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Enfermedad de Chagas/parasitología , Parasitemia/parasitología , Infección Persistente , Reacción en Cadena en Tiempo Real de la Polimerasa , Trypanosoma cruzi/genética , Ensayos Clínicos como Asunto
11.
Proc Natl Acad Sci U S A ; 119(30): e2122165119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867831

RESUMEN

Successful infectious disease interventions can result in large reductions in parasite prevalence. Such demographic change has fitness implications for individual parasites and may shift the parasite's optimal life history strategy. Here, we explore whether declining infection rates can alter Plasmodium falciparum's investment in sexual versus asexual growth. Using a multiscale mathematical model, we demonstrate how the proportion of polyclonal infections, which decreases as parasite prevalence declines, affects the optimal sexual development strategy: Within-host competition in multiclone infections favors a greater investment in asexual growth whereas single-clone infections benefit from higher conversion to sexual forms. At the same time, drug treatment also imposes selection pressure on sexual development by shortening infection length and reducing within-host competition. We assess these models using 148 P. falciparum parasite genomes sampled in French Guiana over an 18-y period of intensive intervention (1998 to 2015). During this time frame, multiple public health measures, including the introduction of new drugs and expanded rapid diagnostic testing, were implemented, reducing P. falciparum malaria cases by an order of magnitude. Consistent with this prevalence decline, we see an increase in the relatedness among parasites, but no single clonal background grew to dominate the population. Analyzing individual allele frequency trajectories, we identify genes that likely experienced selective sweeps. Supporting our model predictions, genes showing the strongest signatures of selection include transcription factors involved in the development of P. falciparum's sexual gametocyte form. These results highlight how public health interventions impose wide-ranging selection pressures that affect basic parasite life history traits.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Antimaláricos/farmacología , Frecuencia de los Genes , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Modelos Biológicos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Prevalencia
12.
Trends Microbiol ; 30(11): 1036-1044, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35597716

RESUMEN

Tuberculosis (TB) remains a leading infectious cause of death worldwide. Reducing TB infections and TB-related deaths rests ultimately on stopping forward transmission from infectious to susceptible individuals. Critical to this effort is understanding how human host mobility shapes the transmission and dispersal of new or existing strains of Mycobacterium tuberculosis (Mtb). Important questions remain unanswered. What kinds of mobility, over what temporal and spatial scales, facilitate TB transmission? How do human mobility patterns influence the dispersal of novel Mtb strains, including emergent drug-resistant strains? This review summarizes the current state of knowledge on mobility and TB epidemic dynamics, using examples from three topic areas, including inference of genetic and spatial clustering of infections, delineating source-sink dynamics, and mapping the dispersal of novel TB strains, to examine scientific questions and methodological issues within this topic. We also review new data sources for measuring human mobility, including mobile phone-associated movement data, and discuss important limitations on their use in TB epidemiology.


Asunto(s)
Epidemias , Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/uso terapéutico , Humanos , Mycobacterium tuberculosis/genética , Tuberculosis/epidemiología , Tuberculosis/microbiología
13.
Mol Ecol Resour ; 22(6): 2285-2303, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35437908

RESUMEN

Multiplexed PCR amplicon sequencing (AmpSeq) is an increasingly popular application for cost-effective monitoring of threatened species and managed wildlife populations, and shows strong potential for the genomic epidemiology of infectious disease. AmpSeq data from infectious microbes can inform disease control in multiple ways, such as by measuring drug resistance marker prevalence, distinguishing imported from local cases, and determining the effectiveness of therapeutics. We describe the design and comparative evaluation of two new AmpSeq assays for Plasmodium falciparum malaria parasites: a four-locus panel ("4CAST") composed of highly diverse antigens, and a 129-locus panel ("AMPLseq") composed of drug resistance markers, highly diverse loci for inferring relatedness, and a locus to detect Plasmodium vivax co-infection. We explore the performance of each panel in various public health use cases with in silico simulations as well as empirical experiments. The 4CAST panel appears highly suitable for evaluating the number of distinct parasite strains within samples (complexity of infection), showing strong performance across a wide range of parasitaemia levels without a DNA pre-amplification step. For relatedness inference, the larger AMPLseq panel performs similarly to two existing panels of comparable size, despite differences in the data and approach used for designing each panel. Finally, we describe an R package (paneljudge) that facilitates the design and comparative evaluation of genetic panels for relatedness estimation, and we provide general guidance on the design and implementation of AmpSeq panels for the genomic epidemiology of infectious disease.


Asunto(s)
Enfermedades Transmisibles , Malaria Vivax , Malaria , Genómica , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Plasmodium falciparum/genética , Plasmodium vivax/genética
14.
PLoS Negl Trop Dis ; 16(1): e0010071, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073316

RESUMEN

The dengue virus affects millions of people every year worldwide, causing large epidemic outbreaks that disrupt people's lives and severely strain healthcare systems. In the absence of a reliable vaccine against dengue or an effective treatment to manage the illness in humans, most efforts to combat dengue infections have focused on preventing its vectors, mainly the Aedes aegypti mosquito, from flourishing across the world. These mosquito-control strategies need reliable disease activity surveillance systems to be deployed. Despite significant efforts to estimate dengue incidence using a variety of data sources and methods, little work has been done to understand the relative contribution of the different data sources to improved prediction. Additionally, scholarship on the topic had initially focused on prediction systems at the national- and state-levels, and much remains to be done at the finer spatial resolutions at which health policy interventions often occur. We develop a methodological framework to assess and compare dengue incidence estimates at the city level, and evaluate the performance of a collection of models on 20 different cities in Brazil. The data sources we use towards this end are weekly incidence counts from prior years (seasonal autoregressive terms), weekly-aggregated weather variables, and real-time internet search data. We find that both random forest-based models and LASSO regression-based models effectively leverage these multiple data sources to produce accurate predictions, and that while the performance between them is comparable on average, the former method produces fewer extreme outliers, and can thus be considered more robust. For real-time predictions that assume long delays (6-8 weeks) in the availability of epidemiological data, we find that real-time internet search data are the strongest predictors of dengue incidence, whereas for predictions that assume short delays (1-3 weeks), in which the error rate is halved (as measured by relative RMSE), short-term and seasonal autocorrelation are the dominant predictors. Despite the difficulties inherent to city-level prediction, our framework achieves meaningful and actionable estimates across cities with different demographic, geographic and epidemic characteristics.


Asunto(s)
Dengue/epidemiología , Internet , Tiempo (Meteorología) , Brasil/epidemiología , Ciudades/epidemiología , Monitoreo Epidemiológico , Humanos , Incidencia , Almacenamiento y Recuperación de la Información , Modelos Estadísticos , Mosquitos Vectores
15.
PLOS Glob Public Health ; 2(8): e0000824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962751

RESUMEN

Official COVID-19 mortality statistics are strongly influenced by local diagnostic capacity, strength of the healthcare and vital registration systems, and death certification criteria and capacity, often resulting in significant undercounting of COVID-19 attributable deaths. Excess mortality, which is defined as the increase in observed death counts compared to a baseline expectation, provides an alternate measure of the mortality shock-both direct and indirect-of the COVID-19 pandemic. Here, we use data from civil death registers from a convenience sample of 90 (of 162) municipalities across the state of Gujarat, India, to estimate the impact of the COVID-19 pandemic on all-cause mortality. Using a model fit to weekly data from January 2019 to February 2020, we estimated excess mortality over the course of the pandemic from March 2020 to April 2021. During this period, the official government data reported 10,098 deaths attributable to COVID-19 for the entire state of Gujarat. We estimated 21,300 [95% CI: 20, 700, 22, 000] excess deaths across these 90 municipalities in this period, representing a 44% [95% CI: 43%, 45%] increase over the expected baseline. The sharpest increase in deaths in our sample was observed in late April 2021, with an estimated 678% [95% CI: 649%, 707%] increase in mortality from expected counts. The 40 to 65 age group experienced the highest increase in mortality relative to the other age groups. We found substantial increases in mortality for males and females. Our excess mortality estimate for these 90 municipalities, representing approximately at least 8% of the population, based on the 2011 census, exceeds the official COVID-19 death count for the entire state of Gujarat, even before the delta wave of the pandemic in India peaked in May 2021. Prior studies have concluded that true pandemic-related mortality in India greatly exceeds official counts. This study, using data directly from the first point of official death registration data recording, provides incontrovertible evidence of the high excess mortality in Gujarat from March 2020 to April 2021.

16.
PLOS Digit Health ; 1(1): e0000010, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36812507
17.
Lancet Digit Health ; 4(1): e27-e36, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740555

RESUMEN

BACKGROUND: In early 2020, the response to the SARS-CoV-2 pandemic focused on non-pharmaceutical interventions, some of which aimed to reduce transmission by changing mixing patterns between people. Aggregated location data from mobile phones are an important source of real-time information about human mobility on a population level, but the degree to which these mobility metrics capture the relevant contact patterns of individuals at risk of transmitting SARS-CoV-2 is not clear. In this study we describe changes in the relationship between mobile phone data and SARS-CoV-2 transmission in the USA. METHODS: In this population-based study, we collected epidemiological data on COVID-19 cases and deaths, as well as human mobility metrics collated by advertisement technology that was derived from global positioning systems, from 1396 counties across the USA that had at least 100 laboratory-confirmed cases of COVID-19. We grouped these counties into six ordinal categories, defined by the National Center for Health Statistics (NCHS) and graded from urban to rural, and quantified the changes in COVID-19 transmission using estimates of the effective reproduction number (Rt) between Jan 22 and July 9, 2020, to investigate the relationship between aggregated mobility metrics and epidemic trajectory. For each county, we model the time series of Rt values with mobility proxies. FINDINGS: We show that the reproduction number is most strongly associated with mobility proxies for change in the travel into counties (0·757 [95% CI 0·689 to 0·857]), but this relationship primarily holds for counties in the three most urban categories as defined by the NCHS. This relationship weakens considerably after the initial 15 weeks of the epidemic (0·442 [-0·492 to -0·392]), consistent with the emergence of more complex local policies and behaviours, including masking. INTERPRETATION: Our study shows that the integration of mobility metrics into retrospective modelling efforts can be useful in identifying links between these metrics and Rt. Importantly, we highlight potential issues in the data generation process for transmission indicators derived from mobile phone data, representativeness, and equity of access, which must be addressed to improve the interpretability of these data in public health. FUNDING: There was no funding source for this study.


Asunto(s)
COVID-19/transmisión , Teléfono Celular , Recolección de Datos/métodos , Modelos Teóricos , Pandemias , Viaje , Benchmarking , COVID-19/prevención & control , Humanos , Salud Pública , Reproducibilidad de los Resultados , Estudios Retrospectivos , SARS-CoV-2 , Estados Unidos , Población Urbana
18.
PLoS Genet ; 17(12): e1009335, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928954

RESUMEN

Measuring gene flow between malaria parasite populations in different geographic locations can provide strategic information for malaria control interventions. Multiple important questions pertaining to the design of such studies remain unanswered, limiting efforts to operationalize genomic surveillance tools for routine public health use. This report examines the use of population-level summaries of genetic divergence (FST) and relatedness (identity-by-descent) to distinguish levels of gene flow between malaria populations, focused on field-relevant questions about data size, sampling, and interpretability of observations from genomic surveillance studies. To do this, we use P. falciparum whole genome sequence data and simulated sequence data approximating malaria populations evolving under different current and historical epidemiological conditions. We employ mobile-phone associated mobility data to estimate parasite migration rates over different spatial scales and use this to inform our analysis. This analysis underscores the complementary nature of divergence- and relatedness-based metrics for distinguishing gene flow over different temporal and spatial scales and characterizes the data requirements for using these metrics in different contexts. Our results have implications for the design and implementation of malaria genomic surveillance studies.


Asunto(s)
Flujo Génico/genética , Genética de Población , Malaria Falciparum/genética , Plasmodium falciparum/genética , Animales , Variación Genética/genética , Genoma/genética , Geografía , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Secuenciación Completa del Genoma
19.
Sci Rep ; 11(1): 23348, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857842

RESUMEN

Identifying sources and sinks of malaria transmission is critical for designing effective intervention strategies particularly as countries approach elimination. The number of malaria cases in Thailand decreased 90% between 2012 and 2020, yet elimination has remained a major public health challenge with persistent transmission foci and ongoing importation. There are three main hotspots of malaria transmission in Thailand: Ubon Ratchathani and Sisaket in the Northeast; Tak in the West; and Yala in the South. However, the degree to which these hotspots are connected via travel and importation has not been well characterized. Here, we develop a metapopulation model parameterized by mobile phone call detail record data to estimate parasite flow among these regions. We show that parasite connectivity among these regions was limited, and that each of these provinces independently drove the malaria transmission in nearby provinces. Overall, our results suggest that due to the low probability of domestic importation between the transmission hotspots, control and elimination strategies can be considered separately for each region.


Asunto(s)
Teléfono Celular/estadística & datos numéricos , Migración Humana/estadística & datos numéricos , Malaria Falciparum/epidemiología , Plasmodium falciparum/aislamiento & purificación , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Vigilancia de la Población , Factores de Riesgo , Tailandia/epidemiología , Viaje
20.
PLoS Comput Biol ; 17(11): e1009570, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34784353

RESUMEN

Time lags in reporting to national surveillance systems represent a major barrier for the control of infectious diseases, preventing timely decision making and resource allocation. This issue is particularly acute for infectious diseases like malaria, which often impact rural and remote communities the hardest. In Guyana, a country located in South America, poor connectivity among remote malaria-endemic regions hampers surveillance efforts, making reporting delays a key challenge for elimination. Here, we analyze 13 years of malaria surveillance data, identifying key correlates of time lags between clinical cases occurring and being added to the central data system. We develop nowcasting methods that use historical patterns of reporting delays to estimate occurred-but-not-reported monthly malaria cases. To assess their performance, we implemented them retrospectively, using only information that would have been available at the time of estimation, and found that they substantially enhanced the estimates of malaria cases. Specifically, we found that the best performing models achieved up to two-fold improvements in accuracy (or error reduction) over known cases in selected regions. Our approach provides a simple, generalizable tool to improve malaria surveillance in endemic countries and is currently being implemented to help guide existing resource allocation and elimination efforts.


Asunto(s)
Malaria/epidemiología , Vigilancia de la Población , Guyana/epidemiología , Humanos , Modelos Estadísticos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...