Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(10)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38456527

RESUMEN

Time-Resolved Serial Femtosecond Crystallography (TR-SFX) conducted at X-ray Free Electron Lasers (XFELs) has become a powerful tool for capturing macromolecular structural movies of light-initiated processes. As the capabilities of XFELs advance, we anticipate that a new range of coherent control and structural Raman measurements will become achievable. Shorter optical and x-ray pulse durations and increasingly more exotic pulse regimes are becoming available at free electron lasers. Moreover, with high repetition enabled by the superconducting technology of European XFEL (EuXFEL) and Linac Coherent Light Source (LCLS-II) , it will be possible to improve the signal-to-noise ratio of the light-induced differences, allowing for the observation of vibronic motion on the sub-Angstrom level. To predict and assign this coherent motion, which is measurable with a structural technique, new theoretical approaches must be developed. In this paper, we present a theoretical density matrix approach to model the various population and coherent dynamics of a system, which considers molecular system parameters and excitation conditions. We emphasize the use of the Wigner transform of the time-dependent density matrix, which provides a phase space representation that can be directly compared to the experimental positional displacements measured in a TR-SFX experiment. Here, we extend the results from simple models to include more realistic schemes that include large relaxation terms. We explore a variety of pulse schemes using multiple model systems using realistic parameters. An open-source software package is provided to perform the density matrix simulation and Wigner transformations. The open-source software allows us to define any arbitrary level schemes as well as any arbitrary electric field in the interaction Hamiltonian.

2.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416044

RESUMEN

Broadband implementation of two-dimensional electronic spectroscopy (2DES) is a desirable goal for numerous research groups, yet achieving it presents considerable challenges. An effective strategy to mitigate these challenges is the utilization of two-color approaches, effectively broadening the spectral bandwidth accessible with 2DES. Here, we present a simple approach to include multi-color configurations based on adjustable mirror mounts. This enables seamless toggling between single-color, two-color, and transient 2DES within the same spectroscopic apparatus, which is benchmarked on two common laser dyes, Rhodamine 6G and Nile blue. Upon mixing the dyes, single-color 2DES shows overlapping signals, whereas a high selectivity toward Nile blue responses is maintained in two-color and transient 2DES, owing to the fully resonant excitation that is spectrally shifted relative to the detection window. This method is readily implemented in other setups with similar experimental layouts and can be used as a simple solution to overcome existing bandwidth limitations. With the inclusion of transient 2DES, additional insights into excited-state processes can be gained due to its increased sensitivity toward excited-state coherences.

3.
J Am Chem Soc ; 145(32): 17965-17974, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37535495

RESUMEN

We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.

4.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37563326

RESUMEN

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Asunto(s)
Rodopsina , Vibración , Movimiento (Física) , Enlace de Hidrógeno
5.
ACS Photonics ; 9(5): 1567-1576, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35607642

RESUMEN

Strong coupling of excitonic resonances with a cavity gives rise to exciton-polaritons which possess a modified energy landscape compared to the uncoupled emitter. However, due to the femtosecond lifetime of the so-called bright polariton states and transient changes of the cavity reflectivity under excitation, it is challenging to directly measure the polariton excited state dynamics. Here, near-infrared pump-probe spectroscopy is used to investigate the ultrafast dynamics of exciton-polaritons based on strongly coupled (6,5) single-walled carbon nanotubes in metal-clad microcavities. We present a protocol for fitting the reflectivity-associated response of the cavity using genetic algorithm-assisted transfer-matrix simulations. With this approach, we are able to identify an absorptive exciton-polariton feature in the transient transmission data. This feature appears instantaneously under resonant excitation of the upper polariton but is delayed for off-resonant excitation. The observed transition energy and detuning dependence point toward a direct upper polariton-to-biexciton transition. Our results provide direct evidence for exciton-polariton intrinsic transitions beyond the bright polariton lifetime in strongly coupled microcavities.

6.
J Phys Chem B ; 125(48): 13235-13245, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34812631

RESUMEN

Research on materials facilitating efficient singlet fission (SF) is driven by a possible reduction of thermalization losses in organic photovoltaic devices. Intramolecular SF (iSF) is in this context of special interest, as the targeted modification of either chromophores or linkers enables gradual variations of molecular properties. In this combined synthetic, spectroscopic, and computational work, we present and investigate nine novel spiro-linked azaarene dimers, which undergo efficient iSF with triplet yields up to 199%. Additional molecular braces enhance the rigidity of these tailor-made dimers (TMDs), resulting in great agreement between crystal structures and predicted optimal geometries for iSF in solution. Regardless of the employed chromophores and linkages, the dynamics of all nine TMDs are perfectly described by a unified kinetic model. Most notably, an increase in the orbital overlap of the π-systems by decreasing the twist angle between the two chromophores does not only increase the rate of formation of the correlated triplet pair but also further promotes its decorrelation. This new structure-function relationship represents a promising strategy toward TMDs with high triplet lifetimes to be utilized in optoelectronic devices.

7.
Opt Lett ; 46(19): 5012-5015, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598255

RESUMEN

Spectral phase characterization of ultrashort laser pulses is essential in nonlinear micro-spectroscopy. Whereas in many applications phases are determined for near-infrared (NIR) pulses, successful mid-infrared (MIR) phase retrieval is rare. The spectral phase of ultra-broadband MIR pulses is determined over more than 1000cm-1 in the presented work. This is accomplished by exploiting the d-scan method in two variants. Both allow for detecting high signals by using the interaction of the MIR and NIR pulses. The two variants differ in imprinting the dispersion. While the dual d-scan imprints phases on both pulses, the Xd-scan method disperses the NIR pulses solely.

8.
ACS Cent Sci ; 7(9): 1561-1571, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34584958

RESUMEN

Small-molecule fluorophores enable the observation of biomolecules in their native context with fluorescence microscopy. Specific labeling via bio-orthogonal tetrazine chemistry combines minimal label size with rapid labeling kinetics. At the same time, fluorogenic tetrazine-dye conjugates exhibit efficient quenching of dyes prior to target binding. However, live-cell compatible long-wavelength fluorophores with strong fluorogenicity have been difficult to realize. Here, we report close proximity tetrazine-dye conjugates with minimal distance between tetrazine and the fluorophore. Two synthetic routes give access to a series of cell-permeable and -impermeable dyes including highly fluorogenic far-red emitting derivatives with electron exchange as the dominant excited-state quenching mechanism. We demonstrate their potential for live-cell imaging in combination with unnatural amino acids, wash-free multicolor and super-resolution STED, and SOFI imaging. These dyes pave the way for advanced fluorescence imaging of biomolecules with minimal label size.

9.
Opt Express ; 29(13): 20970-20980, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266173

RESUMEN

Compression, shaping and characterization of broadband mid-infrared (MIR) pulses based on an acousto-optic modulator (AOM) pulse shaper is presented. Characterization of the spectral phase is achieved by an AOM-shaper based implementation of a dispersion scan (d-scan). The abilities of the setup are demonstrated by imprinting several test phases with increasing complexity on broadband MIR pulses centered at 3.2 µm and retrieval of the imprinted phases with the presented d-scan method. Phase characterization with d-scan in combination with an evolutionary algorithm allows us to compress the MIR pulses below 50 fs FWHM autocorrelation after the shaper.

10.
J Phys Chem C Nanomater Interfaces ; 125(15): 8125-8136, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-34055124

RESUMEN

As narrow optical bandgap materials, semiconducting single-walled carbon nanotubes (SWCNTs) are rarely regarded as charge donors in photoinduced charge-transfer (PCT) reactions. However, the unique band structure and unusual exciton dynamics of SWCNTs add more possibilities to the classical PCT mechanism. In this work, we demonstrate PCT from photoexcited semiconducting (6,5) SWCNTs to a wide-bandgap wrapping poly-[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(6,6')-(2,2'-bipyridine)] (PFO-BPy) via femtosecond transient absorption spectroscopy. By monitoring the spectral dynamics of the SWCNT polaron, we show that charge transfer from photoexcited SWCNTs to PFO-BPy can be driven not only by the energetically favorable E33 transition but also by the energetically unfavorable E22 excitation under high pump fluence. This unusual PCT from narrow-bandgap SWCNTs toward a wide-bandgap polymer originates from the up-converted high-energy excitonic state (E33 or higher) that is promoted by the Auger recombination of excitons and charge carriers in SWCNTs. These insights provide new pathways for charge separation in SWCNT-based photodetectors and photovoltaic cells.

11.
J Phys Chem B ; 124(45): 10186-10194, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33118824

RESUMEN

Singlet fission (SF) is a process by which one excited singlet state yields two triplet states upon close interaction with a ground-state chromophore of the same kind. This photoreaction was first observed in solid state and has important implications in organic photovoltaics. Singlet fission was also reported in concentrated solutions, where the need for diffusion of the reaction partners slows the dynamics. This helps to single out reaction stages and to identify the involved species. In this work, ultrafast transient absorption spectroscopy and time-correlated single photon counting are applied to the concentration-dependent (from 10-1 to 102 mM) photodynamics of a tetrachlorinated phenazinothiadiazole in toluene. Time-resolved emission shows a monoexponential decay, which is constant across the emission band. The corresponding decay rate depends linearly on the concentration of the phenazinothiadiazole. Femtosecond transient absorption demonstrates that a concentration-dependent singlet-to-triplet conversion hides behind the emission decay which is diffusion controlled. Contrary to previous reports on SF in pentacenes and tetracenes, no indication of intermediate states has been found. Efficient, direct and barrierless SF is concluded. The strong enhancement of the triplet yield at increasingly higher concentrations of the thiadiazole indicates very efficient singlet fission with a triplet yield up to 189 ± 5%.

12.
J Phys Chem B ; 124(41): 9163-9174, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32965116

RESUMEN

Singlet fission (SF) has the potential to boost solar energy conversion. Research has focused on designing new strategies to tune the electrochemistry, photophysics, and device architecture at the molecular level to improve the efficiency of SF sensitizers. These studies indicate that SF efficiency strongly depends on morphology, packing, and chemical structure. In this work, we use time-resolved spectroscopy to study intramolecular SF in three covalently linked azaarene dimers. Their rigid structure makes them promising model systems to investigate the effect of chemical modification on intramolecular SF without any potential contributions from geometrical factors. Our experimental results along with theoretical calculations show that SF occurs in all three dimers, confirming SF in perpendicularly oriented chromophores with negligible overlapping π-systems. Additionally, a complex branching mechanism is discovered for the evolution of the singlet (S0S1) and the correlated triplet pair 1(T1T1) states. Although chemical modification has only a minor effect on SF rate and generation of the correlated triplet pair, it plays a critical role in the evolution toward the formation of free triplets. Finally, comparison of deaerated and aerated solutions underpins the effect of oxygen in altering the 1(T1T1) dynamics by opening new decay pathways.

13.
J Phys Chem A ; 124(39): 7857-7868, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32962348

RESUMEN

Charge carrier multiplication via singlet fission into two triplet states has the potential to increase efficiencies of photovoltaics by one-third due to the reduction of thermalization losses. In the present work, we investigate tetraazaperopyrenes, a class of N-heteropolycyles, as suitable singlet fission candidates. Using a combined experimental and theoretical approach, fundamentally different mechanisms for triplet formation in solution and thin film are identified. In solution, an ultrafast intersystem crossing process is observed, which is accelerated for heavier halide substituents not only due to enhanced spin-orbit coupling but also due to the energy tuning between the S1 and T2 states. In thin films, a correlated triplet pair is formed coherently upon photoexcitation. Subsequently, an excimer formation is observed, which competes with the electronic decorrelation of the triplet pair. The comparison with peropyrene shows that aza-substitutions within the aromatic core can be a powerful strategy for tuning the energy levels of the states important to singlet fission.

14.
J Phys Chem A ; 124(41): 8446-8460, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32954733

RESUMEN

Singlet fission (SF) has the potential to dramatically increase solar cell efficiency by converting one singlet exciton to two free triplet excitons via a correlated triplet pair intermediate. Identification and characterization of excited states involved in SF are of great importance for understanding the fundamentals of SF. Despite their importance, it is still nontrivial to distinguish various species in transient absorption spectra due to their spectral overlaps and ultrashort lifetimes. Theoretical modeling of SF and its electronically excited state absorption (ESA) is generally challenging due to the multiexciton nature of the correlated triplet pair, which usually requires description by expensive high-level ab initio methods. In this work, taking the bis((triisopropylsilyl)ethynyl) (TIPS)-pentacene monomer and its covalently linked dimer as representative examples, we demonstrate the use of single-reference DFT-based approaches to simulate the ESA spectra during SF. In particular, the singlet and triplet ESA are evaluated by TDDFT, QR-TDDFT, SLR-TDDFT, SF-TDDFT, and UTDDFT, in combination with ten different exchange-correlation functionals. The correlated triplet pair and its ESA are characterized by broken-symmetry DFT and TDDFT, and the role of orbital relaxation is highlighted. With a rational choice of exchange-correlation functionals, we found the resulting spectra to show good agreement with transient absorption experiments and certain improvements over high-order CI methods.

15.
J Phys Chem B ; 124(29): 6358-6368, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32589422

RESUMEN

Time-resolved spectroscopies have been playing an essential role in the elucidation of the fundamental mechanisms of light-driven processes, particularly in exploring relaxation models for electronically excited molecules. However, the determination of such models from experimentally obtained time-resolved and spectrally resolved data still demands a high degree of intuition, frequently poses numerical challenges, and is often not free from ambiguities. Here, we demonstrate the analysis of time-resolved laser spectroscopy data via a deep learning network to obtain the correct relaxation kinetic model. In its current design, the presented Deep Spectroscopy Kinetic Analysis Network (DeepSKAN) can predict kinetic models (involved states and relaxation pathways) consisting of up to five states, which results in 103 possible different classes, by estimating the probability of occurrence of a given kinetic model class. DeepSKAN was trained with synthetic time-resolved spectra spanning over 4 orders of magnitude in time with a unitless time axis, thereby demonstrating its potential as a universal approach for analyzing data from various time-resolved spectroscopy techniques in different time ranges. By adding the probabilities of each pathway of the top-k models normalized by the total probability, we can determine the relaxation pathways for a given data set with high certainty (up to 99%). Due to its architecture and training, DeepSKAN is robust against experimental noise and typical preanalysis errors like time-zero corrections. Application of DeepSKAN to experimental data is successfully demonstrated for three different photoinduced processes: transient absorption of the retinal isomerization, transient IR spectroscopy of the relaxation of the photoactivated DRONPA, and transient absorption of the dynamics in lycopene. This approach delivers kinetic models and could be a unifying asset in several areas of spectroscopy.

16.
Nat Commun ; 10(1): 5202, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729391

RESUMEN

Singlet fission is the photoinduced conversion of a singlet exciton into two triplet states of half-energy. This multiplication mechanism has been successfully applied to improve the efficiency of single-junction solar cells in the visible spectral range. Here we show that singlet fission may also occur via a sequential mechanism, where the two triplet states are generated consecutively by exploiting oxygen as a catalyst. This sequential formation of carriers is demonstrated for two acene-like molecules in solution. First, energy transfer from the excited acene to triplet oxygen yields one triplet acene and singlet oxygen. In the second stage, singlet oxygen combines with a ground-state acene to complete singlet fission. This yields a second triplet molecule. The sequential mechanism accounts for approximately 40% of the triplet quantum yield in the studied molecules; this process occurs in dilute solutions and under atmospheric conditions, where the single-step SF mechanism is inactive.

17.
J Phys Chem B ; 123(50): 10780-10793, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31751127

RESUMEN

Generating two long-living low-energy excitations after absorption of a single high-energy photon has stoked interest in singlet fission (SF) to enhance solar energy conversion in photovoltaics. To this end, survival of the triplet states is critical. This process is investigated in diethynylbenzene-linked tetraaza-triisopropylsilylethynyl-pentacene dimers, for which SF is energetically feasible and facilitated by the close distances between the azapentacenes. The ortho and meta connectivities are explored and compared with the tetraazapentacene molecule and the (1,3,5) trimer. Efficient SF (potential ΦT ≥ 160%) is demonstrated in all oligomers by quantitative kinetic analysis of broadband transient absorption and fluorescence signals. Together with dynamics of the starting singlet, the triplet pair, and the final free triplet state, our results show an intermediate component with spectral properties compatible with a biexcitonic state. Long-living triplets represent only a fraction of the high number of transient triplet pair intermediates, which undergo triplet-triplet annihilation as well as fusion between neighboring pentacenes. Therefore, our work provides new insight into the SF in covalent dimers and paves the way for the application of these materials for carrier multiplication.

18.
J Am Chem Soc ; 141(22): 8834-8845, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31063690

RESUMEN

Quantum chemistry and time-resolved spectroscopy are applied to rationalize how singlet fission (SF) is affected by systematic chemical modifications introduced into phenazinothiadiazoles (PTD). Substitution of the terminal aromatic ring of TIPS-tetracene by a thiadiazole group leads to a considerable change in the relative energies of its S1 and T1 states. Thus, in contrast to TIPS-tetracene, SF becomes exothermic for various PTD derivatives, which show S1-2T1 energy differences as high as 0.15 eV. This enables SF in PTD as corroborated by femtosecond transient absorption spectroscopy and TD-DFT calculations. The latter report T-T spectra consistent with thin film UV-vis femtosecond transient absorption of PTDs at long delays. TD-DFT calculations also show that the S1-T1 energy gap can be rationally tuned by introducing N atoms into the aromatic scaffold and by the halogenation of one side ring of the PTD. In addition, the specific S1-to-1(T1T1) electronic coupling depends on the crystal morphology and the electronic properties simultaneously. Thus, both of them govern the strength and the interplay between direct and superexchange couplings, which in the most favorable cases accelerate SF to rate constants beyond (100 fs)-1. Remarkably, direct coupling was found to contribute considerably to the total effective coupling and even to dominate it for some PTDs investigated here. A quantum yield of 200% is obtained on the early picosecond time scale for all compounds studied here, which is reduced to 100% due to triplet-triplet annihilation after a few nanoseconds.

19.
J Phys Chem Lett ; 10(5): 1012-1017, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30742765

RESUMEN

The interaction between the retinal protonated Schiff base (RPSB) and surrounding protein residues inside the retinal pocket is believed to play a major role in the ultrafast isomerization of the former. Coherent time-resolved vibrational spectroscopic techniques are applied to reveal the effect of changes in the protein architecture by point mutations (V112N and L83Q) close to the RPSB in Anabaena sensory rhodopsin (ASR). Our study reveals that such point mutations have a minor effect on the low-frequency (<400 cm-1) torsional modes but dramatically influence the ground-state vibrational Raman activity of the C14-H out-of-plane (HOOP) wag mode (800-820 cm-1). In mutated ASR, the increase of HOOP Raman activity in the ground state is experimentally observed for the all- trans RPSB, which has shorter excited-state lifetime than in wild-type ASR. This indicates that predistortion of the RPSB inside the mutated retinal pocket is a major factor in the acceleration of the isomerization rate.


Asunto(s)
Anabaena/química , Hidrógeno/química , Mutación Puntual , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/química , Espectrometría Raman
20.
J Phys Chem B ; 122(51): 12271-12281, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30507189

RESUMEN

The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.


Asunto(s)
Retinaldehído/química , Luz , Retinaldehído/efectos de la radiación , Bases de Schiff/química , Bases de Schiff/efectos de la radiación , Análisis Espectral/métodos , Estereoisomerismo , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA