Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Geroscience ; 46(5): 4543-4561, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38656649

RESUMEN

INTRODUCTION: The prevalence of heart failure with preserved ejection fraction (HFpEF) is continuously rising and predominantly affects older women often hypertensive and/or obese or diabetic. Indeed, there is evidence on sex differences in the development of HF. Hence, we studied cardiovascular performance dependent on sex and age as well as pathomechanisms on a cellular and molecular level. METHODS: We studied 15-week- and 1-year-old female and male hypertensive transgenic rats carrying the mouse Ren-2 renin gene (TG) and compared them to wild-type (WT) controls at the same age. We tracked blood pressure and cardiac function via echocardiography. After sacrificing the 1-year survivors we studied vascular smooth muscle and endothelial function. Isolated single skinned cardiomyocytes were used to determine passive stiffness and Ca2+-dependent force. In addition, Western blots were applied to analyse the phosphorylation status of sarcomeric regulatory proteins, titin and of protein kinases AMPK, PKG, CaMKII as well as their expression. Protein kinase activity assays were used to measure activities of CaMKII, PKG and angiotensin-converting enzyme (ACE). RESULTS: TG male rats showed significantly higher mortality at 1 year than females or WT male rats. Left ventricular (LV) ejection fraction was specifically reduced in male, but not in female TG rats, while LV diastolic dysfunction was evident in both TG sexes, but LV hypertrophy, increased LV ACE activity, and reduced AMPK activity as evident from AMPK hypophosphorylation were specific to male rats. Sex differences were also observed in vascular and cardiomyocyte function showing different response to acetylcholine and Ca2+-sensitivity of force production, respectively cardiomyocyte functional changes were associated with altered phosphorylation states of cardiac myosin binding protein C and cardiac troponin I phosphorylation in TG males only. Cardiomyocyte passive stiffness was increased in TG animals. On a molecular level titin phosphorylation pattern was altered, though alterations were sex-specific. Thus, also the reduction of PKG expression and activity was more pronounced in TG females. However, cardiomyocyte passive stiffness was restored by PKG and CaMKII treatments in both TG sexes. CONCLUSION: Here we demonstrated divergent sex-specific cardiovascular adaptation to the over-activation of the renin-angiotensin system in the rat. Higher mortality of male TG rats in contrast to female TG rats was observed as well as reduced LV systolic function, whereas females mainly developed HFpEF. Though both sexes developed increased myocardial stiffness to which an impaired titin function contributes to a sex-specific molecular mechanism. The functional derangements of titin are due to a sex-specific divergent regulation of PKG and CaMKII systems.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Miocitos Cardíacos , Ratas Transgénicas , Remodelación Ventricular , Animales , Masculino , Femenino , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratas , Remodelación Ventricular/fisiología , Factores Sexuales , Miocitos Cardíacos/metabolismo , Conectina/metabolismo , Modelos Animales de Enfermedad , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ecocardiografía , Fosforilación , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474037

RESUMEN

Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.


Asunto(s)
Miofibrillas , Proteína Quinasa C , Procesamiento Proteico-Postraduccional , Ratones , Animales , Conectina/metabolismo , Miofibrillas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Proteínas de Microfilamentos/metabolismo , Homeostasis , Inflamación/metabolismo , Calcio/metabolismo , Mamíferos/metabolismo
3.
Eur J Cell Biol ; 103(2): 151407, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555846

RESUMEN

We analyzed actin cytoskeleton alterations during NET extrusion by neutrophil-like dHL-60 cells and human neutrophils in the absence of DNase1 containing serum to avoid chromatin degradation and microfilament disassembly. NET-formation by dHL-60 cells and neutrophils was induced by Ionomycin or phorbol-12-myristat-13-acetate (PMA). Subsequent staining with anti-actin and TRITC-phalloidin showed depolymerization of the cortical F-actin at spatially confined areas, the NET extrusion sites, effected by transient activation of the monooxygenase MICAL-1 supported by the G-actin binding proteins cofilin, profilin, thymosin ß4 and probably the F-actin fragmenting activity of gelsolin and/or its fragments, which also decorated the formed NETs. MICAL-1 itself appeared to be proteolyzed by neutrophil elastase possibly to confine its activity to the NET-extrusion area. The F-actin oxidization activity of MICAL-1 is inhibited by Levosimendan leading to reduced NET-formation. Anti-gasdermin-D immunohistochemistry showed a cytoplasmic distribution in non-stimulated cells. After stimulation the NET-extrusion pore displayed reduced anti-gasdermin-D staining but accumulated underneath the plasma membrane of the remaining cell body. A similar distribution was observed for myosin that concentrated together with cortical F-actin along the periphery of the remaining cell body suggesting force production by acto-myosin interactions supporting NET expulsion as indicated by the inhibitory action of the myosin ATPase inhibitor blebbistatin. Isolated human neutrophils displayed differences in their content of certain cytoskeletal proteins. After stimulation neutrophils with high gelsolin content preferentially formed "cloud"-like NETs, whereas those with low or no gelsolin formed long "filamentous" NETs.


Asunto(s)
Citoesqueleto de Actina , Trampas Extracelulares , Neutrófilos , Humanos , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Citoesqueleto de Actina/metabolismo , Células HL-60 , Actinas/metabolismo , Gelsolina/metabolismo
4.
Front Cardiovasc Med ; 10: 1157398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363100

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex cardiovascular insufficiency syndrome presenting with an ejection fraction (EF) of greater than 50% along with different proinflammatory and metabolic co-morbidities. Despite previous work provided key insights into our understanding of HFpEF, effective treatments are still limited. In the current study we attempted to unravel the molecular basis of sex-dependent differences in HFpEF pathology. We analyzed left ventricular samples from 1-year-old female and male transgenic (TG) rats homozygous for the rat Ren-2 renin gene (mRen2) characterized with hypertension and diastolic dysfunction and compared it to age-matched female and male wild type rats (WT) served as control. Cardiomyocytes from female and male TG rats exhibited an elevated titin-based stiffness (Fpassive), which was corrected to control level upon treatment with reduced glutathione indicating titin oxidation. This was accompanied with high levels of oxidative stress in TG rats with more prominent effects in female group. In vitro supplementation with heat shock proteins (HSPs) reversed the elevated Fpassive indicating restoration of their cytoprotective function. Furthermore, the TG group exhibited high levels of proinflammatory cytokines with significant alterations in apoptotic and autophagy pathways in both sexes. Distinct alterations in the expression of several proteins between both sexes suggest their differential impact on disease development and necessitate distinct treatment options. Hence, our data suggested that oxidative stress and inflammation distinctly drive diastolic dysfunction and remodeling in female and male rats with HFpEF and that the sex-dependent mechanisms contribute to HF pathology.

6.
Antioxidants (Basel) ; 11(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36358581

RESUMEN

Volume-induced hypertrophy is one of the risk factors for cardiac morbidity and mortality. In addition, mechanical and metabolic dysfunction, aging, and cellular redox balance are also contributing factors to the disease progression. In this study, we used volume overload (VO), which was induced by an aortocaval fistula in 2-month-old male Wistar rats, and sham-operated animals served as control. Functional parameters were measured by transthoracic echocardiography at termination 4- or 8-months after VO. The animals showed hypertrophic remodeling that was accompanied by mechanical dysfunction and increased cardiomyocyte stiffness. These alterations were reversible upon treatment with glutathione. Cardiomyocyte dysfunction was associated with elevated oxidative stress markers with unchanged inflammatory signaling pathways. In addition, we observed altered phosphorylation status of small heat shock proteins 27 and 70 and diminished protease expression caspases 3 compared to the matched control group, indicating an impaired protein quality control system. Such alterations might be attributed to the increased oxidative stress as anticipated from the enhanced titin oxidation, ubiquitination, and the elevation in oxidative stress markers. Our study showed an early pathological response to VO, which manifests in cardiomyocyte mechanical dysfunction and dysregulated signaling pathways associated with enhanced oxidative stress and an impaired protein quality control system.

7.
Front Physiol ; 13: 928232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874547

RESUMEN

Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.

8.
Int J Cardiol ; 362: 196-205, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35643215

RESUMEN

INTRODUCTION: The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. 'cytokine storm') and oxidative stress are likely involved. METHODS AND RESULTS: Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. CONCLUSION: This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inflamación , Miocitos Cardíacos , Estrés Oxidativo
9.
ESC Heart Fail ; 9(4): 2585-2600, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35584900

RESUMEN

AIMS: Volume overload (VO) induced hypertrophy is one of the hallmarks to the development of heart diseases. Understanding the compensatory mechanisms involved in this process might help preventing the disease progression. METHODS AND RESULTS: Therefore, the present study used 2 months old Wistar rats, which underwent an aortocaval fistula to develop VO-induced hypertrophy. The animals were subdivided into four different groups, two sham operated animals served as age-matched controls and two groups with aortocaval fistula. Echocardiography was performed prior termination after 4- and 8-month. Functional and molecular changes of several sarcomeric proteins and their signalling pathways involved in the regulation and modulation of cardiomyocyte function were investigated. RESULTS: The model was characterized with preserved ejection fraction in all groups and with elevated heart/body weight ratio, left/right ventricular and atrial weight at 4- and 8-month, which indicates VO-induced hypertrophy. In addition, 8-months groups showed increased left ventricular internal diameter during diastole, RV internal diameter, stroke volume and velocity-time index compared with their age-matched controls. These changes were accompanied by increased Ca2+ sensitivity and titin-based cardiomyocyte stiffness in 8-month VO rats compared with other groups. The altered cardiomyocyte mechanics was associated with phosphorylation deficit of sarcomeric proteins cardiac troponin I, myosin binding protein C and titin, also accompanied with impaired signalling pathways involved in phosphorylation of these sarcomeric proteins in 8-month VO rats compared with age-matched control group. Impaired protein phosphorylation status and dysregulated signalling pathways were associated with significant alterations in the oxidative status of both kinases CaMKII and PKG explaining by this the elevated Ca2+ sensitivity and titin-based cardiomyocyte stiffness and perhaps the development of hypertrophy. CONCLUSIONS: Our findings showed VO-induced cardiomyocyte dysfunction via deranged phosphorylation of myofilament proteins and signalling pathways due to increased oxidative state of CaMKII and PKG and this might contribute to the development of hypertrophy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Insuficiencia Cardíaca , Animales , Calcio/metabolismo , Conectina/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico , Hipertrofia , Ratas , Ratas Wistar
11.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681814

RESUMEN

Inherited cardiomyopathies form a heterogenous group of disorders that affect the structure and function of the heart. Defects in the genes encoding sarcomeric proteins are associated with various perturbations that induce contractile dysfunction and promote disease development. In this review we aimed to outline the functional consequences of the major inherited cardiomyopathies in terms of myocardial contraction and kinetics, and to highlight the structural and functional alterations in some sarcomeric variants that have been demonstrated to be involved in the pathogenesis of the inherited cardiomyopathies. A particular focus was made on mutation-induced alterations in cardiomyocyte mechanics. Since no disease-specific treatments for familial cardiomyopathies exist, several novel agents have been developed to modulate sarcomere contractility. Understanding the molecular basis of the disease opens new avenues for the development of new therapies. Furthermore, the earlier the awareness of the genetic defect, the better the clinical prognostication would be for patients and the better the prevention of development of the disease.


Asunto(s)
Cardiomiopatías/fisiopatología , Miocitos Cardíacos/fisiología , Animales , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Cardiomiopatías/terapia , Humanos , Contracción Miocárdica/genética , Miocardio/patología , Miocitos Cardíacos/patología , Sarcómeros/metabolismo , Sarcómeros/fisiología
12.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502534

RESUMEN

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.


Asunto(s)
Cardiomiopatías/genética , Mutación Missense , Miofibrillas/metabolismo , Troponina I/genética , Adenosina Trifosfatasas/metabolismo , Adulto , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Catequina/análogos & derivados , Catequina/farmacología , Humanos , Lactante , Masculino , Microscopía Electrónica de Transmisión , Miofibrillas/efectos de los fármacos , Miofibrillas/ultraestructura , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Índice de Severidad de la Enfermedad , Simendán/farmacología , Tropomiosina/metabolismo , Troponina I/metabolismo
13.
Int J Cardiol ; 344: 160-169, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517018

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a complex myocardial disorder with no well-established disease-modifying therapy so far. Our study aimed to investigate how autophagy, oxidative stress, inflammation, stress signalling pathways, and apoptosis are hallmark of HCM and their contribution to the cardiac dysfunction. Demembranated cardiomyocytes from patients with HCM display increased titin-based stiffness (Fpassive), which was corrected upon antioxidant treatment. Titin as a main determinant of Fpassive was S-glutathionylated and highly ubiquitinated in HCM patients. This was associated with a shift in the balance of reduced and oxidized forms of glutathione (GSH and GSSG, respectively). Both heat shock proteins (HSP27 and α-ß crystalline) were upregulated and S-glutathionylated in HCM. Administration of HSPs in vitro significantly reduced HCM cardiomyocyte stiffness. High levels of the phosphorylated monomeric superoxide anion-generating endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO) bioavailability, decreased soluble guanylyl cyclase (sGC) activity, and high levels of 3-nitrotyrosine were observed in HCM. Many regulators of signal transduction pathways that are involved in autophagy, apoptosis, cardiac contractility, and growth including the mitogen-activated protein kinase (MAPK), protein kinase B (AKT), glycogen synthase kinase 3ß (GSK-3ß), mammalian target of rapamycin (mTOR), forkhead box O transcription factor (FOXO), c-Jun N-terminal protein kinase (JNK), and extracellular-signal-regulated kinase (ERK1/2) were modified in HCM. The apoptotic factors cathepsin, procaspase 3, procaspase 9 and caspase 12, but not caspase 9, were elevated in HCM hearts and associated with increased proinflammatory cytokines (Interleukin 6 (IL-6), interleukin 18 (IL-18), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), the Toll-like receptors 2 (TLR2) and the Toll-like receptors 4 (TLR4)) and oxidative stress (3-nitrotyrosine and hydrogen peroxide (H2O2)). Here we reveal stress signalling and impaired PQS as potential mechanisms underlying the HCM phenotype. Our data suggest that reducing oxidative stress can be a viable therapeutic approach to attenuating the severity of cardiac dysfunction in heart failure and potentially in HCM and prevent its progression.


Asunto(s)
Cardiomiopatía Hipertrófica , Peróxido de Hidrógeno , Apoptosis , Quinasas MAP Reguladas por Señal Extracelular , Humanos , Estrés Oxidativo
14.
Antioxidants (Basel) ; 10(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356367

RESUMEN

Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca2+-activated tension and Ca2+ sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca2+ sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure.

15.
Antioxidants (Basel) ; 10(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208541

RESUMEN

Standard heart failure (HF) therapies have failed to improve cardiac function or survival in HF patients with right ventricular (RV) dysfunction suggesting a divergence in the molecular mechanisms of RV vs. left ventricular (LV) failure. Here we aimed to investigate interventricular differences in sarcomeric regulation and function in experimental myocardial infarction (MI)-induced HF with reduced LV ejection fraction (HFrEF). MI was induced by LAD ligation in Sprague-Dawley male rats. Sham-operated animals served as controls. Eight weeks after intervention, post-ischemic HFrEF and Sham animals were euthanized. Heart tissue samples were deep-frozen stored (n = 3-5 heart/group) for ELISA, kinase activity assays, passive stiffness and Ca2+-sensitivity measurements on isolated cardiomyocytes, phospho-specific Western blot, and PAGE of contractile proteins, as well as for collagen gene expressions. Markers of oxidative stress and inflammation showed interventricular differences in post-ischemic rats: TGF-ß1, lipid peroxidation, and 3-nitrotyrosine levels were higher in the LV than RV, while hydrogen peroxide, VCAM-1, TNFα, and TGF-ß1 were increased in both ventricles. In addition, nitric oxide (NO) level was significantly decreased, while FN-1 level was significantly increased only in the LV, but both were unchanged in RV. CaMKII activity showed an 81.6% increase in the LV, in contrast to a 38.6% decrease in the RV of HFrEF rats. Cardiomyocyte passive stiffness was higher in the HFrEF compared to the Sham group as evident from significantly steeper Fpassive vs. sarcomere length relationships. In vitro treatment with CaMKIIδ, however, restored cardiomyocyte passive stiffness only in the HFrEF RV, but had no effect in the HFrEF LV. PKG activity was lower in both ventricles in the HFrEF compared to the Sham group. In vitro PKG administration decreased HFrEF cardiomyocyte passive stiffness; however, the effect was more pronounced in the HFrEF LV than HFrEF RV. In line with this, we observed distinct changes of titin site-specific phosphorylation in the RV vs. LV of post-ischemic rats, which may explain divergent cardiomyocyte stiffness modulation observed. Finally, Ca2+-sensitivity of RV cardiomyocytes was unchanged, while LV cardiomyocytes showed increased Ca2+-sensitivity in the HFrEF group. This could be explained by decreased Ser-282 phosphorylation of cMyBP-C by 44.5% in the RV, but without any alteration in the LV, while Ser-23/24 phosphorylation of cTnI was decreased in both ventricles in the HFrEF vs. the Sham group. Our data pointed to distinct signaling pathways-mediated phosphorylations of sarcomeric proteins for the RV and LV of the post-ischemic failing rat heart. These results implicate divergent responses for oxidative stress and open a new avenue in targeting the RV independently of the LV.

16.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429969

RESUMEN

The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Restrictiva/genética , Insuficiencia Cardíaca/genética , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Restrictiva/complicaciones , Cardiomiopatía Restrictiva/patología , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Humanos , Mutación/genética , Linaje , Fenotipo
17.
PLoS One ; 15(3): e0229227, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32182250

RESUMEN

TNNI3 encoding cTnI, the inhibitory subunit of the troponin complex, is the main target for mutations leading to restrictive cardiomyopathy (RCM). Here we investigate two cTnI-R170G/W amino acid replacements, identified in infantile RCM patients, which are located in the regulatory C-terminus of cTnI. The C-terminus is thought to modulate the function of the inhibitory region of cTnI. Both cTnI-R170G/W strongly enhanced the Ca2+-sensitivity of skinned fibres, as is typical for RCM-mutations. Both mutants strongly enhanced the affinity of troponin (cTn) to tropomyosin compared to wildtype cTn, whereas binding to actin was either strengthened (R170G) or weakened (R170W). Furthermore, the stability of reconstituted thin filaments was reduced as revealed by electron microscopy. Filaments containing R170G/W appeared wavy and showed breaks. Decoration of filaments with myosin subfragment S1 was normal in the presence of R170W, but was irregular with R170G. Surprisingly, both mutants did not affect the Ca2+-dependent activation of reconstituted cardiac thin filaments. In the presence of the N-terminal fragment of cardiac myosin binding protein C (cMyBPC-C0C2) cooperativity of thin filament activation was increased only when the filaments contained wildtype cTn. No effect was observed in the presence of cTn containing R170G/W. cMyBPC-C0C2 significantly reduced binding of wildtype troponin to actin/tropomyosin, but not of both mutant cTn. Moreover, we found a direct troponin/cMyBPC-C0C2 interaction using microscale thermophoresis and identified cTnI and cTnT, but not cTnC as binding partners for cMyBPC-C0C2. Only cTn containing cTnI-R170G showed a reduced affinity towards cMyBPC-C0C2. Our results suggest that the RCM cTnI variants R170G/W impair the communication between thin and thick filament proteins and destabilize thin filaments.


Asunto(s)
Sustitución de Aminoácidos , Cardiomiopatía Restrictiva/genética , Miocardio/metabolismo , Sarcómeros/metabolismo , Troponina I/genética , Actinas/metabolismo , Animales , Calcio/metabolismo , Cardiomiopatía Restrictiva/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Preescolar , Cobayas , Humanos , Microscopía Electrónica , Modelos Biológicos , Unión Proteica , Tropomiosina/metabolismo
18.
PLoS One ; 13(2): e0192322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29466442

RESUMEN

AIMS: In contrast to the membrane bound adenylyl cyclases, the soluble adenylyl cyclase (sAC) is activated by bicarbonate and divalent ions including calcium. sAC is located in the cytosol, nuclei and mitochondria of several tissues including cardiac muscle. However, its role in cardiac pathology is poorly understood. Here we investigate whether sAC is involved in hypertrophic growth using two different model systems. METHODS AND RESULTS: In isolated adult rat cardiomyocytes hypertrophy was induced by 24 h ß1-adrenoceptor stimulation using isoprenaline (ISO) and a ß2-adrenoceptor antagonist (ICI118,551). To monitor hypertrophy cell size along with RNA/DNA- and protein/DNA ratios as well as the expression level of α-skeletal actin were analyzed. sAC activity was suppressed either by treatment with its specific inhibitor KH7 or by knockdown. Both pharmacological inhibition and knockdown blunted hypertrophic growth and reduced expression levels of α-skeletal actin in ISO/ICI treated rat cardiomyocytes. To analyze the underlying cellular mechanism expression levels of phosphorylated CREB, B-Raf and Erk1/2 were examined by western blot. The results suggest the involvement of B-Raf, but not of Erk or CREB in the pro-hypertrophic action of sAC. In wild type and sAC knockout mice pressure overload was induced by transverse aortic constriction. Hemodynamics, heart weight and the expression level of the atrial natriuretic peptide were analyzed. In accordance, transverse aortic constriction failed to induce hypertrophy in sAC knockout mice. Mechanistic analysis revealed a potential role of Erk1/2 in TAC-induced hypertrophy. CONCLUSION: Soluble adenylyl cyclase might be a new pivotal player in the cardiac hypertrophic response either to long-term ß1-adrenoceptor stimulation or to pressure overload.


Asunto(s)
Adenilil Ciclasas/metabolismo , Agonistas Adrenérgicos beta/efectos adversos , Cardiomegalia/enzimología , Isoproterenol/efectos adversos , Animales , Cardiomegalia/inducido químicamente , Ratones , Presión , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...