Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Psychopharmacol ; 37(6): 601-609, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37125702

RESUMEN

BACKGROUND: The dopamine transporter (DAT) is the main regulator of dopamine concentration in the extrasynaptic space. The pharmacological inhibition of the DAT results in a wide spectrum of behavioral manifestations, which have been identified so far in a limited number of species, mostly in rodents. AIM: Here, we used another well-recognized model organism, the zebrafish (Danio rerio), to explore the behavioral effects of GBR 12909, a highly-affine selective DAT blocker. METHODS: We evaluated zebrafish locomotion, novelty-related exploration, spatial cognition, and social phenotypes in the novel tank, habituation and shoaling tests, following acute 20-min water immersion in GBR 12909. RESULTS: Our findings show hypolocomotion, anxiety-like state, and impaired spatial cognition in fish acutely treated with GBR 12909. This behavioral profile generally parallels that of the DAT knockout rodents and zebrafish, and it overlaps with behavioral effects of other DAT-inhibiting drugs of abuse, such as cocaine and D-amphetamine. CONCLUSION: Collectively, our data support the utility of zebrafish in translational studies on DAT targeting neuropharmacology and strongly implicate DAT aberration as an important mechanisms involved in neurological and psychiatric diseases.


Asunto(s)
Cocaína , Pez Cebra , Animales , Dopamina , Inhibidores de Captación de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Cocaína/farmacología
2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430544

RESUMEN

The Trace Amine-Associated Receptor 1 (TAAR1) is one of the six functional receptors belonging to the family of monoamine-related G protein-coupled receptors (TAAR1-TAAR9) found in humans. However, the exact biological mechanisms of TAAR1 central and peripheral action remain to be fully understood. TAAR1 is widely expressed in the prefrontal cortex and several limbic regions, interplaying with the dopamine system to modulate the reward circuitry. Recent clinical trials suggest the efficacy of TAAR1 agonists as potential novel antipsychotic agents. Here, we characterize behavioral and neurochemical phenotypes of TAAR1 knockout mice, focusing on aggression and self-grooming behavior that both strongly depend on the monoaminergic signaling and cortico-striatal and cortico-limbic circuits. Overall, we report increased aggression in these knockout mice in the resident-intruder test, accompanied by reduced self-grooming behavior in the novelty-induced grooming test, and by higher cortical serotonin (5-HT) tissue levels. Further studies are necessary to explore whether TAAR1-based therapies can become potential novel treatments for a wide range of neuropsychiatric disorders associated with aggression.


Asunto(s)
Genética Conductual , Receptores Acoplados a Proteínas G , Serotonina , Animales , Ratones , Agresión/fisiología , Aseo Animal/fisiología , Ratones Noqueados , Corteza Prefrontal/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo
3.
Cells ; 11(9)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563838

RESUMEN

Progress in the development of technologies for the real-time monitoring of neurotransmitter dynamics has provided researchers with effective tools for the exploration of etiology and molecular mechanisms of neuropsychiatric disorders. One of these powerful tools is fast-scan cyclic voltammetry (FSCV), a technique which has progressively been used in animal models of diverse pathological conditions associated with alterations in dopamine transmission. Indeed, for several decades FSCV studies have provided substantial insights into our understanding of the role of abnormal dopaminergic transmission in pathogenetic mechanisms of drug and alcohol addiction, Parkinson's disease, schizophrenia, etc. Here we review the applications of FSCV to research neuropsychiatric disorders with particular attention to recent technological advances.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Animales , Modelos Animales , Neurotransmisores
4.
Front Behav Neurosci ; 16: 847410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431833

RESUMEN

Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines. However, recently, brain expression and function of TAAR5 were also demonstrated. In this study, we assessed the behavior, brain neurochemistry, and electrophysiology changes in knock-out mice lacking Trace amine-associated receptor 2 (TAAR2) but expressing beta-Galactosidase mapping expression of TAAR2 receptors. As expected, we detected beta-Galactosidase staining in the glomerular layer of the olfactory bulb. However, we also found staining in the deeper layers of the olfactory bulb and several brain regions, including the hippocampus, cerebellum, cortex, raphe nuclei, hypothalamus, and habenula, indicating that TAAR2 receptors are not only expressed in the olfactory system but are also present in the limbic brain areas that receive olfactory input. In behavioral experiments, TAAR2 knock-out (TAAR2-KO) mice showed increased locomotor activity and less immobility in the forced swim test, with no changes in anxiety level. Furthermore, TAAR2-KO mice showed alterations in brain electrophysiological activity-particularly, decreased spectral power of the cortex and striatum in the 0, 9-20 Hz range. TAAR2-KO mice also had elevated tissue dopamine levels in the striatum and an increased dopaminergic neuron number in the Substantia Nigra. In addition, an increased brain-derived neurotrophic factor (BDNF) mRNA level in the striatum and Monoamine Oxidase B (MAO-B) mRNA level in the striatum and midbrain was found in TAAR2-KO mice. Importantly, TAAR2-KO mice demonstrated an increased neuroblast-like and proliferating cell number in the subventricular and subgranular zone, indicating increased adult neurogenesis. These data indicate that in addition to its role in the innate olfaction of volatile amines, TAAR2 is expressed in limbic brain areas and regulates the brain dopamine system, neuronal electrophysiological activity, and adult neurogenesis. These findings further corroborated observations in TAAR1-KO and TAAR5-KO mice, indicating common for TAAR family pattern of expression in limbic brain areas and role in regulating monoamine levels and adult neurogenesis, but with variable involvement of each subtype of TAAR receptors in these functions.

5.
Biomolecules ; 13(1)2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36671420

RESUMEN

The present study aimed to explore the consequences of a single exposure to a social defeat on dopamine release in the rat nucleus accumbens measured with a fast-scan cyclic voltammetry. We found that 24 h after a social defeat, accumbal dopamine responses, evoked by a high frequency electrical stimulation of the ventral tegmental area, were more profound in socially defeated rats in comparison with non-defeated control animals. The enhanced dopamine release was associated with the prolonged immobility time in the forced swim test. The use of the dopamine depletion protocol revealed no alteration in the reduction and recovery of the amplitude of dopamine release following social defeat stress. However, administration of dopamine D2 receptor antagonist, raclopride (2 mg/kg, i.p.), resulted in significant increase of the electrically evoked dopamine release in both groups of animals, nevertheless exhibiting less manifested effect in the defeated rats comparing to control animals. Taken together, our data demonstrated profound alterations in the dopamine transmission in the association with depressive-like behavior following a single exposure to stressful environment. These voltammetric findings pointed to a promising path for the identification of neurobiological mechanisms underlying stress-promoted behavioral abnormalities.


Asunto(s)
Dopamina , Derrota Social , Ratas , Animales , Núcleo Accumbens/fisiología , Racloprida/farmacología
6.
Front Behav Neurosci ; 15: 640651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935662

RESUMEN

The current rodent study applied in vivo fast-scan cyclic voltammetry (FSCV), paired with a pharmacological approach, to measure the release of the catecholamines (CA) dopamine (DA) and norepinephrine (NE) in the basolateral amygdala (BLA) following locus coeruleus (LC) stimulation. The primary goal was to determine if exposure to either social (social defeat) or non-social (forced swim) stress altered LC-evoked catecholamine release dynamics in the BLA. We used idazoxan (α2 adrenergic receptor antagonist) and raclopride (D2 dopamine receptor antagonist) to confirm the presence of NE and DA, respectively, in the measured CA signal. In non-stressed rats, injection of idazoxan, but not raclopride, resulted in a significant increase in the detected CA signal, indicating the presence of NE but not DA. Following exposure to either stress paradigm, the measured CA release was significantly greater after injection of either drug, suggesting the presence of both NE and DA in the LC-induced CA signal after social or non-social stress. Furthermore, acute administration of alcohol significantly decreased the CA signal in stressed rats, while it did not have an effect in naïve animals. Together, these data reveal that, while LC stimulation primarily elicits NE release in the BLA of control animals, both social and non-social stress unmask a novel dopaminergic component of LC catecholamine signaling. Future studies will be needed to identify the specific neural mechanism(s) responsible for these plastic changes in LC-BLA catecholamine signaling and to assess the possible contribution of these changes to the maladaptive behavioral phenotypes that develop following exposure to these stressors.

7.
Front Behav Neurosci ; 15: 795030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975429

RESUMEN

Using a variety of animal models that simulate key features of the alcohol use disorder (AUD), remarkable progress has been made in identifying neurochemical targets that may contribute to the development of alcohol addiction. In this search, the dopamine (DA) and norepinephrine (NE) systems have been long thought to play a leading role in comparison with other brain systems. However, just recent development and application of optogenetic approaches into the alcohol research field provided opportunity to identify neuronal circuits and specific patterns of neurotransmission that govern the key components of ethanol-addictive behaviors. This critical review summarizes earlier findings, which initially disclosed catecholamine substrates of ethanol actions in the brain and shows how the latest methodologies help us to reveal the significance of DA and NE release changes. Specifically, we focused on recent optogenetic investigations aimed to reveal cause-effect relationships between ethanol-drinking (seeking and taking) behaviors and catecholamine dynamics in distinct brain pathways. These studies gain the knowledge that is needed for the better understanding addiction mechanisms and, therefore, for development of more effective AUD treatments. Based on the reviewed findings, new messages for researches were indicated, which may have broad applications beyond the field of alcohol addiction.

8.
Mol Cell Neurosci ; 109: 103563, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33039519

RESUMEN

Recent work demonstrated that sympathetic neurons innervate the skeletal muscle near the neuromuscular junction (NMJ), and muscle sympathectomy and sympathomimetic agents strongly influence motoneuron synaptic vesicle release ex vivo. Moreover, reports attest that the pontine nucleus locus coeruleus (LC) projects to preganglionic sympathetic neurons and regulates human mobility and skeletal muscle physiology. Thus, we hypothesized that peripheral and central sympathetic neurons projecting directly or indirectly to the skeletal muscle regulate NMJ transmission. The aim of this study was to define the specific neuronal groups in the peripheral and central nervous systems that account for such regulation in adult mice in vivo by using optogenetics and NMJ transmission recordings in 3-5-month-old, male and female ChR2(H134R/EYFP)/TH-Cre mice. After detecting ChR2(H134R)/EYFP fluorescence in the paravertebral ganglia and LC neurons, we tested whether optostimulating the plantar nerve near the lumbricalis muscle or LC neurons effectively modulates motor nerve terminal synaptic vesicle release in living mice. Nerve optostimulation increased motor synaptic vesicle release in vitro and in vivo, while the presynaptic adrenoceptor blockers propranolol (ß1/ß2) and atenolol (ß1) prevented this outcome. The effect is primarily presynaptic since miniature end-plate potential (MEPP) kinetics remained statistically unmodified after stimulation. In contrast, optostimulation of LC neurons did not regulate NMJ transmission. In summary, we conclude that postganglionic sympathetic neurons, but not LC neurons, increased NMJ transmission by acting on presynaptic ß1-adrenergic receptors in vivo.


Asunto(s)
Locus Coeruleus/fisiología , Neuronas Motoras/fisiología , Unión Neuromuscular/fisiología , Optogenética/métodos , Transmisión Sináptica/fisiología , Nervio Tibial/fisiología , Animales , Channelrhodopsins/análisis , Channelrhodopsins/genética , Dependovirus/fisiología , Femenino , Ganglios Simpáticos/fisiología , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Rayos Láser , Luz , Masculino , Ratones , Ratones Transgénicos , Potenciales Postsinápticos Miniatura/fisiología , Neuronas Motoras/efectos de la radiación , Mutación Missense , Receptores Adrenérgicos beta 1/fisiología , Proteínas Recombinantes de Fusión/análisis , Fibras Simpáticas Posganglionares/fisiología , Transmisión Sináptica/efectos de la radiación , Nervio Tibial/efectos de la radiación
9.
Neuroscience ; 443: 84-92, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32707291

RESUMEN

The relationship between stress and alcohol-drinking behaviors has been intensively explored; however, neuronal substrates and neurotransmitter dynamics responsible for a causal link between these conditions are still unclear. Here, we optogenetically manipulated locus coeruleus (LC) norepinephrine (NE) activity by applying distinct stimulation protocols in order to explore how phasic and tonic NE release dynamics control alcohol-drinking behaviors. Our results clearly demonstrate contrasting behavioral consequences of LC-NE circuitry activation during low and high frequency stimulation. Specifically, applying tonic stimulation during a standard operant drinking session resulted in increased intake, while phasic stimulation decreased this measure. Furthermore, stimulation during extinction probe trials, when the lever press response was not reinforced, did not significantly alter alcohol-seeking behavior if a tonic pattern was applied. However, phasic stimulation substantially suppressed the number of lever presses, indicating decreased alcohol seeking under the same experimental condition. Given the well-established correlative link between stress and increased alcohol consumption, here we provide the first evidence that tonic LC-NE activity plays a causal role in stress-associated increases in drinking.


Asunto(s)
Locus Coeruleus , Neuronas , Conducta de Ingestión de Líquido , Norepinefrina
10.
iScience ; 23(3): 100877, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32062422

RESUMEN

Despite many years of work on dopaminergic mechanisms of alcohol addiction, much of the evidence remains mostly correlative in nature. Fortunately, recent technological advances have provided the opportunity to explore the causal role of alterations in neurotransmission within circuits involved in addictive behaviors. Here, we address this critical gap in our knowledge by integrating an optogenetic approach and an operant alcohol self-administration paradigm to assess directly how accumbal dopamine (DA) release dynamics influences the appetitive (seeking) component of alcohol-drinking behavior. We show that appetitive reward-seeking behavior in rats trained to self-administer alcohol can be shaped causally by ventral tegmental area-nucleus accumbens (VTA-NAc) DA neurotransmission. Our findings reveal that phasic patterns of DA release within this circuit enhance a discrete measure of alcohol seeking, whereas tonic patterns of stimulation inhibit this behavior. Moreover, we provide mechanistic evidence that tonic-phasic interplay within the VTA-NAc DA circuit underlies these seemingly paradoxical effects.

11.
Sci Rep ; 9(1): 15627, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666560

RESUMEN

Intracerebroventricular (ICV) administration of ouabain, an inhibitor of the Na, K-ATPase, is an approach used to study the physiological functions of the Na, K-ATPase and cardiotonic steroids in the central nervous system, known to cause mania-like hyperactivity in rats. We describe a mouse model of ouabain-induced mania-like behavior. ICV administration of 0.5 µl of 50 µM (25 pmol, 14.6 ng) ouabain into each lateral brain ventricle results in increased locomotor activity, stereotypical behavior, and decreased anxiety level an hour at minimum. Fast-scan cyclic voltammetry showed that administration of 50 µM ouabain causes a drastic drop in dopamine uptake rate, confirmed by elevated concentrations of dopamine metabolites detected in the striatum 1 h after administration. Ouabain administration also caused activation of Akt, deactivation of GSK3ß and activation of ERK1/2 in the striatum of ouabain-treated mice. All of the abovementioned effects are attenuated by haloperidol (70 µg/kg intraperitoneally). Observed effects were not associated with neurotoxicity, since no dystrophic neuron changes in brain structures were demonstrated by histological analysis. This newly developed mouse model of ouabain-induced mania-like behavior could provide a perspective tool for studying the interactions between the Na,K-ATPase and the dopaminergic system.


Asunto(s)
Trastorno Bipolar/inducido químicamente , Ouabaína/efectos adversos , Receptores de Dopamina D2/metabolismo , Animales , Conducta Animal , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Trastorno Bipolar/psicología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Masculino , Ratones , Ouabaína/administración & dosificación , Receptores de Dopamina D2/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
12.
ACS Chem Neurosci ; 10(4): 1986-1991, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30289684

RESUMEN

Activity in the mesolimbic dopamine (DA) pathway is known to have a role in reward processing and related behaviors. The mesolimbic DA response to reward has been well-examined, while the response to aversive or negative stimuli has been studied to a lesser extent and produced inconclusive results. However, a brief increase in the DA concentration in terminals during nociceptive activation has become an established but not well-characterized phenomenon. Consequently, the interpretation of the significance of this neurochemical response is still elusive. The present study was designed to further explore these increases in subsecond DA dynamics triggered by negative stimuli using voltammetry in anesthetized rats. Our experiments revealed that repeated exposure to a tail pinch resulted in more efficacious DA release in rat nucleus accumbens. This fact may suggest a protective nature of immediate DA efflux. Furthermore, a sensitized DA response to a neutral stimulus, such as a touch, was discovered following several noxious pinches, while a touch applied before these pinches did not trigger DA release. Finally, it was found that the pinch-evoked DA efflux was significantly decreased by ethanol acutely administrated at an analgesic dose. Taken together, these results support the hypothesis that subsecond DA release in the nucleus accumbens may serve as an endogenous antinociceptive signal.


Asunto(s)
Dopamina/metabolismo , Etanol/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Estimulación Física/efectos adversos , Animales , Estimulación Física/métodos , Ratas , Ratas Sprague-Dawley , Cola (estructura animal)/efectos de los fármacos , Cola (estructura animal)/metabolismo
13.
Synapse ; 73(4): e22080, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30447016

RESUMEN

Using fast-scan cyclic voltammetry paired with pharmacology, the authors show that infralimbic catecholamine release following locus coeruleus stimulation is noradrenergic, but not dopaminergic, and not affected by acute ethanol. With previous work, these data suggest differential effects of ethanol on prefrontal norepinephrine and dopamine, a region important in addiction-related pathways.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Locus Coeruleus/fisiología , Norepinefrina/metabolismo , Corteza Prefrontal/metabolismo , Animales , Potenciales Evocados , Locus Coeruleus/efectos de los fármacos , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Ratas Long-Evans
14.
Sci Rep ; 8(1): 332, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321525

RESUMEN

The current study aimed to explore how presynaptic dopamine (DA) function is altered following brief stress episodes and chronic ethanol self-administration and whether these neuroadaptations modify the acute effects of ethanol on DA dynamics. We used fast-scan cyclic voltammetry to evaluate changes in DA release and uptake parameters in rat nucleus accumbens brain slices by analyzing DA transients evoked through single pulse electrical stimulation. Adult male rats were divided into four groups: ethanol-naïve or ethanol drinking (six week intermittent two-bottle choice) and stressed (mild social defeat) or nonstressed. Results revealed that the mild stress significantly increased DA release and uptake in ethanol-naïve subjects, compared to nonstressed controls. Chronic ethanol self-administration increased the DA uptake rate and occluded the effects of stress on DA release dynamics. Bath-applied ethanol decreased stimulated DA efflux in a concentration-dependent manner in all groups; however, the magnitude of this effect was blunted by either stress or chronic ethanol, or by a combination of both procedures. Together, these findings suggest that stress and ethanol drinking may promote similar adaptive changes in accumbal presynaptic DA release measures and that these changes may contribute to the escalation in ethanol intake that occurs during the development of alcohol use disorder.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Estrés Psicológico , Consumo de Bebidas Alcohólicas/psicología , Animales , Biomarcadores , Masculino , Núcleo Accumbens/fisiopatología , Ratas , Autoadministración
15.
J Neurosci ; 38(8): 1959-1972, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29348190

RESUMEN

Dopamine (DA) controls many vital physiological functions and is critically involved in several neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder. The major function of the plasma membrane dopamine transporter (DAT) is the rapid uptake of released DA into presynaptic nerve terminals leading to control of both the extracellular levels of DA and the intracellular stores of DA. Here, we present a newly developed strain of rats in which the gene encoding DAT knockout Rats (DAT-KO) has been disrupted by using zinc finger nuclease technology. Male and female DAT-KO rats develop normally but weigh less than heterozygote and wild-type rats and demonstrate pronounced spontaneous locomotor hyperactivity. While striatal extracellular DA lifetime and concentrations are significantly increased, the total tissue content of DA is markedly decreased demonstrating the key role of DAT in the control of DA neurotransmission. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, the partial Trace Amine-Associated Receptor 1 (TAAR1) agonist RO5203648 ((S)-4-(3,4-Dichloro-phenyl)-4,5-dihydro-oxazol-2-ylamine) and haloperidol. DAT-KO rats also demonstrate a deficit in working memory and sensorimotor gating tests, less propensity to develop obsessive behaviors and show strong dysregulation in frontostriatal BDNF function. DAT-KO rats could provide a novel translational model for human diseases involving aberrant DA function and/or mutations affecting DAT or related regulatory mechanisms.SIGNIFICANCE STATEMENT Here, we present a newly developed strain of rats in which the gene encoding the dopamine transporter (DAT) has been disrupted (Dopamine Transporter Knockout rats [DAT-KO rats]). DAT-KO rats display functional hyperdopaminergia accompanied by pronounced spontaneous locomotor hyperactivity. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, and a few other compounds exerting inhibitory action on dopamine-dependent hyperactivity. DAT-KO rats also demonstrate cognitive deficits in working memory and sensorimotor gating tests, less propensity to develop compulsive behaviors, and strong dysregulation in frontostriatal BDNF function. These observations highlight the key role of DAT in the control of brain dopaminergic transmission. DAT-KO rats could provide a novel translational model for human diseases involving aberrant dopamine functions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/deficiencia , Hipercinesia/etiología , Animales , Disfunción Cognitiva/metabolismo , Femenino , Técnicas de Inactivación de Genes , Hipercinesia/metabolismo , Masculino , Ratas , Ratas Wistar
17.
Nat Neurosci ; 20(3): 449-458, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28135243

RESUMEN

Neural networks that control reproduction must integrate social and hormonal signals, tune motivation, and coordinate social interactions. However, the neural circuit mechanisms for these processes remain unresolved. The medial preoptic area (mPOA), an essential node for social behaviors, comprises molecularly diverse neurons with widespread projections. Here we identify a steroid-responsive subset of neurotensin (Nts)-expressing mPOA neurons that interface with the ventral tegmental area (VTA) to form a socially engaged reward circuit. Using in vivo two-photon imaging in female mice, we show that mPOANts neurons preferentially encode attractive male cues compared to nonsocial appetitive stimuli. Ovarian hormone signals regulate both the physiological and cue-encoding properties of these cells. Furthermore, optogenetic stimulation of mPOANts-VTA circuitry promotes rewarding phenotypes, social approach and striatal dopamine release. Collectively, these data demonstrate that steroid-sensitive mPOA neurons encode ethologically relevant stimuli and co-opt midbrain reward circuits to promote prosocial behaviors critical for species survival.


Asunto(s)
Vías Nerviosas/fisiología , Neurotensina/fisiología , Área Preóptica/fisiología , Recompensa , Conducta Social , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Estradiol/farmacología , Ciclo Estral/fisiología , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas/fisiología , Neurotensina/metabolismo , Odorantes , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Área Tegmental Ventral/fisiología
18.
Neuroscience ; 333: 54-64, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27421228

RESUMEN

Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.


Asunto(s)
Dopamina/metabolismo , Conducta Alimentaria/fisiología , Núcleo Accumbens/metabolismo , Optogenética , Recompensa , Área Tegmental Ventral/metabolismo , Animales , Conducta de Elección/fisiología , Conducta Consumatoria/fisiología , Sacarosa en la Dieta , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Agua Potable , Estimulación Eléctrica , Conducta Alimentaria/psicología , Masculino , Núcleo Accumbens/citología , Periodicidad , Ratas Long-Evans
19.
J Neurogenet ; 30(1): 5-15, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-27276191

RESUMEN

The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview, we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Animales , Ratones , Investigación Biomédica Traslacional
20.
Proc Natl Acad Sci U S A ; 113(25): 6985-90, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27298371

RESUMEN

Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson's disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine-lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres.


Asunto(s)
Cerebro/metabolismo , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA