Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutrients ; 9(2)2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28230765

RESUMEN

This paper aims to compare the metabolic effects of glucose-fructose co-ingestion (GLUFRU) with glucose alone (GLU) in exercising individuals with type 1 diabetes mellitus. Fifteen male individuals with type 1 diabetes (HbA1c 7.0% ± 0.6% (53 ± 7 mmol/mol)) underwent a 90 min iso-energetic continuous cycling session at 50% VO2max while ingesting combined glucose-fructose (GLUFRU) or glucose alone (GLU) to maintain stable glycaemia without insulin adjustment. GLUFRU and GLU were labelled with 13C-fructose and 13C-glucose, respectively. Metabolic assessments included measurements of hormones and metabolites, substrate oxidation, and stable isotopes. Exogenous carbohydrate requirements to maintain stable glycaemia were comparable between GLUFRU and GLU (p = 0.46). Fat oxidation was significantly higher (5.2 ± 0.2 vs. 2.6 ± 1.2 mg·kg-1·min-1, p < 0.001) and carbohydrate oxidation lower (18.1 ± 0.8 vs. 24.5 ± 0.8 mg·kg-1·min-1p < 0.001) in GLUFRU compared to GLU, with decreased muscle glycogen oxidation in GLUFRU (10.2 ± 0.9 vs. 17.5 ± 1.0 mg·kg-1·min-1, p < 0.001). Lactate levels were higher (2.2 ± 0.2 vs. 1.8 ± 0.1 mmol/L, p = 0.012) in GLUFRU, with comparable counter-regulatory hormones between GLUFRU and GLU (p > 0.05 for all). Glucose and insulin levels, and total glucose appearance and disappearance were comparable between interventions. Glucose-fructose co-ingestion may have a beneficial impact on fuel metabolism in exercising individuals with type 1 diabetes without insulin adjustment, by increasing fat oxidation whilst sparing glycogen.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Carbohidratos de la Dieta/administración & dosificación , Ejercicio Físico/fisiología , Fructosa/farmacología , Glucosa/farmacología , Fenómenos Fisiológicos en la Nutrición Deportiva , Adulto , Ciclismo , Dieta , Carbohidratos de la Dieta/sangre , Grasas de la Dieta/metabolismo , Ingestión de Alimentos , Fructosa/administración & dosificación , Fructosa/metabolismo , Glucosa/administración & dosificación , Glucosa/metabolismo , Glucógeno/metabolismo , Hormonas/sangre , Humanos , Insulina/sangre , Ácido Láctico/sangre , Masculino , Músculos/metabolismo , Consumo de Oxígeno , Adulto Joven
2.
Magn Reson Med ; 78(1): 33-39, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27455454

RESUMEN

PURPOSE: A 31 P-MR inversion transfer (IT) method with a short adiabatic inversion pulse is proposed and its test-retest reliability was evaluated for two spectral fitting strategies. METHODS: Assessment in a test-retest design (3 Tesla, vastus muscles, 12 healthy volunteers, 14 inversion times, 22 ms asymmetric adiabatic inversion pulse, adiabatic excitation); spectral fitting in Fitting Tool for Interrelated Arrays of Datasets (FitAID) and Java Magnetic Resonance User Interface (jMRUI); least squares solution of the Bloch-McConnell-Solomon matrix formalism including all 14 measured time-points with equal weighting. RESULTS: The cohort averages of k[PCr→γ-ATP] (phosphocreatine, PCr; adenosine triphosphate, ATP) are 0.246 ± 0.050s-1 versus 0.254 ± 0.050s-1 , and k[Pi→γ-ATP] 0.086 ± 0.033s-1 versus 0.066 ± 0.034s-1 (average ± standard deviation, jMRUI versus FitAID). Coefficients of variation of the differences between test and retest are lowest (9.5%) for k[PCr→γ-ATP] fitted in FitAID, larger (15.2%) for the fit in jMRUI, and considerably larger for k[Pi→γ-ATP] fitted in FitAID (43.4%) or jMRUI (47.9%). The beginning of the IT effect can be observed with magnetizations above 92% for noninverted lines while inversion of the ATP resonances is better than -72%. CONCLUSION: The performance of the asymmetric adiabatic pulse allows an accurate observation of IT effects even in the early phase; the least squares fit of the Bloch-McConnell-Solomon matrix formalism is robust; and the type of spectral fitting can influence the results significantly. Magn Reson Med 78:33-39, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia Magnética/métodos , Imagen Molecular/métodos , Músculo Esquelético/metabolismo , Fosfocreatina/análogos & derivados , Fósforo/farmacocinética , Procesamiento de Señales Asistido por Computador , Adulto , Femenino , Humanos , Masculino , Variaciones Dependientes del Observador , Fosfocreatina/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
3.
NMR Biomed ; 29(6): 796-805, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27074205

RESUMEN

Glycogen is a major substrate in energy metabolism and particularly important to prevent hypoglycemia in pathologies of glucose homeostasis such as type 1 diabetes mellitus (T1DM). (13) C-MRS is increasingly used to determine glycogen in skeletal muscle and liver non-invasively; however, the low signal-to-noise ratio leads to long acquisition times, particularly when glycogen levels are determined before and after interventions. In order to ease the requirements for the subjects and to avoid systematic effects of the lengthy examination, we evaluated if a standardized preparation period would allow us to shift the baseline (pre-intervention) experiments to a preceding day. Based on natural abundance (13) C-MRS on a clinical 3 T MR system the present study investigated the test-retest reliability of glycogen measurements in patients with T1DM and matched controls (n = 10 each group) in quadriceps muscle and liver. Prior to the MR examination, participants followed a standardized diet and avoided strenuous exercise for two days. The average coefficient of variation (CV) of myocellular glycogen levels was 9.7% in patients with T1DM compared with 6.6% in controls after a 2 week period, while hepatic glycogen variability was 13.3% in patients with T1DM and 14.6% in controls. For comparison, a single-session test-retest variability in four healthy volunteers resulted in 9.5% for skeletal muscle and 14.3% for liver. Glycogen levels in muscle and liver were not statistically different between test and retest, except for hepatic glycogen, which decreased in T1DM patients in the retest examination, but without an increase of the group distribution. Since the CVs of glycogen levels determined in a "single session" versus "within weeks" are comparable, we conclude that the major source of uncertainty is the methodological error and that physiological variations can be minimized by a pre-study standardization. For hepatic glycogen examinations, familiarization sessions (MR and potentially strenuous interventions) are recommended. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Diabetes Mellitus Tipo 1/metabolismo , Glucógeno/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Adulto , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
Sci Rep ; 6: 19310, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26792091

RESUMEN

Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50-60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn't significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids.


Asunto(s)
Enanismo Hipofisario/metabolismo , Enanismo Hipofisario/terapia , Ejercicio Físico , Terapia de Reemplazo de Hormonas , Hormona de Crecimiento Humana/deficiencia , Metabolismo de los Lípidos , Adulto , Glucemia , Enanismo Hipofisario/diagnóstico , Enanismo Hipofisario/etiología , Prueba de Esfuerzo , Femenino , Glucosa/metabolismo , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Masculino , Persona de Mediana Edad , Células Musculares/metabolismo , Estudios Prospectivos , Grasa Subcutánea/metabolismo
5.
Diabetologia ; 59(4): 776-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26739816

RESUMEN

AIMS/HYPOTHESIS: To investigate exercise-related fuel metabolism in intermittent high-intensity (IHE) and continuous moderate intensity (CONT) exercise in individuals with type 1 diabetes mellitus. METHODS: In a prospective randomised open-label cross-over trial twelve male individuals with well-controlled type 1 diabetes underwent a 90 min iso-energetic cycling session at 50% maximal oxygen consumption ([Formula: see text]), with (IHE) or without (CONT) interspersed 10 s sprints every 10 min without insulin adaptation. Euglycaemia was maintained using oral (13)C-labelled glucose. (13)C Magnetic resonance spectroscopy (MRS) served to quantify hepatocellular and intramyocellular glycogen. Measurements of glucose kinetics (stable isotopes), hormones and metabolites complemented the investigation. RESULTS: Glucose and insulin levels were comparable between interventions. Exogenous glucose requirements during the last 30 min of exercise were significantly lower in IHE (p = 0.02). Hepatic glucose output did not differ significantly between interventions, but glucose disposal was significantly lower in IHE (p < 0.05). There was no significant difference in glycogen consumption. Growth hormone, catecholamine and lactate levels were significantly higher in IHE (p < 0.05). CONCLUSIONS/INTERPRETATION: IHE in individuals with type 1 diabetes without insulin adaptation reduced exogenous glucose requirements compared with CONT. The difference was not related to increased hepatic glucose output, nor to enhanced muscle glycogen utilisation, but to decreased glucose uptake. The lower glucose disposal in IHE implies a shift towards consumption of alternative substrates. These findings indicate a high flexibility of exercise-related fuel metabolism in type 1 diabetes, and point towards a novel and potentially beneficial role of IHE in these individuals. TRIAL REGISTRATION: ClinicalTrials.gov NCT02068638 FUNDING: Swiss National Science Foundation (grant number 320030_149321/) and R&A Scherbarth Foundation (Switzerland).


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/fisiopatología , Ejercicio Físico/fisiología , Adulto , Catecolaminas/sangre , Estudios Cruzados , Metabolismo Energético/fisiología , Hormona del Crecimiento/sangre , Humanos , Ácido Láctico/sangre , Masculino , Estudios Prospectivos , Adulto Joven
6.
NMR Biomed ; 28(2): 188-99, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25483778

RESUMEN

(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.


Asunto(s)
Hígado/metabolismo , Fenómenos Magnéticos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/metabolismo , Fósforo , Adenosina Trifosfato/metabolismo , Adulto , Simulación por Computador , Creatina Quinasa/metabolismo , Femenino , Humanos , Masculino , Método de Montecarlo
7.
J Vasc Res ; 51(5): 360-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25531648

RESUMEN

The objective of this work was to demonstrate the feasibility of measuring muscle O2 consumption (V˙O2) noninvasively with a combination of functional nuclear magnetic resonance (NMR) imaging methods, and to verify that changes in muscle V˙O2 can be detected with a temporal resolution compatible with physiological investigation and patient ease. T2-based oxymetry of arterial and venous blood was combined with the arterial-spin labeling (ASL)-based determination of muscle perfusion. These measurements were performed on 8 healthy volunteers under normoxic and hypoxic conditions in order to assess the sensitivity of measurements over a range of saturation values. Blood samples were drawn simultaneously and used to titrate blood T2 measurements versus hemoglobin O2 saturation (%HbO2) in vitro. The in vitro calibration curve of blood T2 fitted very well with the %HbO2 (r(2): 0.95). The in vivo venous T2 measurements agreed well with the in vitro measurements (intraclass correlation coefficient 0.82, 95% confidence interval 0.61-0.91). Oxygen extraction at rest decreased in the calf muscles subjected to hypoxia (p = 0.031). The combination of unaltered muscle perfusion and pinched arteriovenous O2 difference (p = 0.038) pointed towards a reduced calf muscle V˙O2 during transient hypoxia (p = 0.018). The results of this pilot study confirmed that muscle O2 extraction and V˙O2 can be estimated noninvasively using a combination of functional NMR techniques. Further studies are needed to confirm the usefulness in a larger sample of volunteers and patients.


Asunto(s)
Imagen por Resonancia Magnética , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Oximetría , Consumo de Oxígeno , Oxígeno/sangre , Imagen de Perfusión/métodos , Adulto , Calibración , Estudios de Factibilidad , Femenino , Voluntarios Sanos , Humanos , Hipoxia/sangre , Hipoxia/fisiopatología , Pierna , Imagen por Resonancia Magnética/normas , Masculino , Modelos Biológicos , Oximetría/normas , Imagen de Perfusión/normas , Proyectos Piloto , Valor Predictivo de las Pruebas , Estándares de Referencia , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Factores de Tiempo
8.
PLoS One ; 8(8): e70865, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967125

RESUMEN

BACKGROUND: Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass). AIM: To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy. METHODS: Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO(2max)) using ¹H-MR-spectroscopy. RESULTS: Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO(2max), 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (-22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity. CONCLUSIONS: IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions. TRIAL REGISTRATION: ClinicalTrial.gov NCT00491582.


Asunto(s)
Ejercicio Físico , Voluntarios Sanos , Metabolismo de los Lípidos , Hígado/citología , Músculo Esquelético/citología , Adulto , Prueba de Esfuerzo , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Resistencia a la Insulina , Grasa Intraabdominal/citología , Masculino , Oxígeno/metabolismo , Grasa Subcutánea/citología
9.
Am J Clin Nutr ; 96(5): 1008-16, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23034968

RESUMEN

BACKGROUND: A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans. OBJECTIVE: The aim of this study was to evaluate the effect of essential amino acid supplementation on the increase in hepatic fat content induced by a high-fructose diet in healthy subjects. DESIGN: Nine healthy male volunteers were studied on 3 occasions in a randomized, crossover design after 6 d of dietary intervention. Dietary conditions consisted of a weight-maintenance balanced diet (control) or the same balanced diet supplemented with 3 g fructose · kg(-1) · d(-1) and 6.77 g of a mixture of 5 essential amino acids 3 times/d (leucine, isoleucine, valine, lysine, and threonine) (HFrAA) or with 3 g fructose · kg(-1) · d(-1) and a maltodextrin placebo 3 times/d (HFr); there was a washout period of 4 to 10 wk between each condition. For each condition, the intrahepatocellular lipid (IHCL) concentration, VLDL-triglyceride concentration, and VLDL-[(13)C]palmitate production were measured after oral loading with [(13)C]fructose. RESULTS: HFr increased the IHCL content (1.27 ± 0.31 compared with 2.74 ± 0.55 vol %; P < 0.05) and VLDL-triglyceride (0.55 ± 0.06 compared with 1.40 ± 0.15 mmol/L; P < 0.05). HFr also enhanced VLDL-[(13)C]palmitate production. HFrAA significantly decreased IHCL compared with HFr (to 2.30 ± 0.43 vol%; P < 0.05) but did not change VLDL-triglyceride concentrations or VLDL-[(13)C]palmitate production. CONCLUSIONS: Supplementation with essential amino acids blunts the fructose-induced increase in IHCL but not hypertriglyceridemia. This is not because of inhibition of VLDL-[(13)C]palmitate production. This trial was registered at www.clinicaltrials.gov as NCT01119989.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Carbohidratos de la Dieta/administración & dosificación , Suplementos Dietéticos , Fructosa/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estudios Cruzados , Carbohidratos de la Dieta/metabolismo , Fructosa/metabolismo , Humanos , Masculino , Palmitatos/sangre , Método Simple Ciego , Triglicéridos/sangre , Adulto Joven
10.
J Magn Reson Imaging ; 36(4): 951-60, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22645058

RESUMEN

PURPOSE: To investigate the inhomogeneity of radiofrequency fields at higher field strengths that can interfere with established volumetric methods, in particular for the determination of visceral (VAT) and subcutaneous adipose tissue (SCAT). A versatile, interactive sparse sampling (VISS) method is proposed to determine VAT, SCAT, and also total body volume (TBV). MATERIALS AND METHODS: VISS is based on a separation of major components by contour lines, followed by a sparse sampling algorithm, and eventually a quick manual correction. T1-weighted whole body scans of 24 subjects were evaluated (12 at 1.5T, 12 at 3.0T). RESULTS: (a) Coefficients of variance (CV) and intra class correlation coefficients (ICC) determined within 3 raters (24 subjects) showed high consistency for SCAT (CV 2.2%, ICC 0.993) and VAT (CV 4.9%, ICC 0.987), (b) comparison with an established volumetric method revealed good agreement (Bland-Altman, VAT -0.68L to 1.07L, SCAT -2.18L to 8.39L), and (c) comparison of weights calculated from TBV with values measured on a scale resulted in an even better accuracy for VISS (Bland-Altman -1.98 kg to 4.09 kg) than for the reference method (-5.60 kg to 1.60 kg). CONCLUSION: VISS is reproducible in particular within the same rater, accurate as compared with established methods, and robust against low contrast and inhomogeneity artifacts.


Asunto(s)
Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Grasa Intraabdominal/anatomía & histología , Imagen por Resonancia Magnética/métodos , Imagen de Cuerpo Entero/métodos , Adulto , Algoritmos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Tamaño de la Muestra , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
11.
Amino Acids ; 42(6): 2461-72, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21847611

RESUMEN

Carnosine (ß-alanyl-L-histidine) is found in high concentrations in skeletal muscle and chronic ß-alanine (BA) supplementation can increase carnosine content. This placebo-controlled, double-blind study compared two different 8-week BA dosing regimens on the time course of muscle carnosine loading and 8-week washout, leading to a BA dose-response study with serial muscle carnosine assessments throughout. Thirty-one young males were randomized into three BA dosing groups: (1) high-low: 3.2 g BA/day for 4 weeks, followed by 1.6 g BA/day for 4 weeks; (2) low-low: 1.6 g BA/day for 8 weeks; and (3) placebo. Muscle carnosine in tibialis-anterior (TA) and gastrocnemius (GA) muscles was measured by 1H-MRS at weeks 0, 2, 4, 8, 12 and 16. Flushing symptoms and blood clinical chemistry were trivial in all three groups and there were no muscle carnosine changes in the placebo group. During the first 4 weeks, the increase for high-low (TA 2.04 mmol/kgww, GA 1.75 mmol/kgww) was ~twofold greater than low-low (TA 1.12 mmol/kgww, GA 0.80 mmol/kgww). 1.6 g BA/day significantly increased muscle carnosine within 2 weeks and induced continual rises in already augmented muscle carnosine stores (week 4-8, high-low regime). The dose-response showed a carnosine increase of 2.01 mmol/kgww per 100 g of consumed BA, which was only dependent upon the total accumulated BA consumed (within a daily intake range of 1.6-3.2 g BA/day). Washout rates were gradual (0.18 mmol/kgww and 0.43 mmol/kgww/week; ~2%/week). In summary, the absolute increase in muscle carnosine is only dependent upon the total BA consumed and is not dependent upon baseline muscle carnosine, the muscle type, or the daily amount of supplemented BA.


Asunto(s)
Carnosina/biosíntesis , Músculo Esquelético/efectos de los fármacos , beta-Alanina/administración & dosificación , Adulto , Carnosina/análisis , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Músculo Esquelético/metabolismo , Placebos
12.
Med Sci Sports Exerc ; 43(10): 1964-71, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21407126

RESUMEN

PURPOSE: Both liver and muscle glycogen stores play a fundamental role in exercise and fatigue, but the effect of different CHO sources on liver glycogen synthesis in humans is unclear. The aim was to compare the effect of maltodextrin (MD) drinks containing galactose, fructose, or glucose on postexercise liver glycogen synthesis. METHODS: In this double-blind, triple crossover, randomized clinical trial, 10 well-trained male cyclists performed three experimental exercise sessions separated by at least 1 wk. After performing a standard exercise protocol to exhaustion, subjects ingested one of three 15% CHO solutions, namely, FRU (MD + fructose, 2:1), GAL (MD + galactose, 2:1), or GLU (MD + glucose, 2:1), each providing 69 g CHO·h(-1) during 6.5 h of recovery. Liver glycogen changes were followed using (13)C magnetic resonance spectroscopy. RESULTS: Liver glycogen concentration increased at faster rates with FRU (24 ± 2 mmol·L(-1)·h(-1), P < 0.001) and with GAL (28 ± 3 mmol·L(-1)·h(-1), P < 0.001) than with GLU (13 ± 2 mmol·L(-1)·h(-1)). Liver volumes increased (P < 0.001) with FRU (9% ± 2%) and with GAL (10% ± 2%) but not with GLU (2% ± 1%, NS). Net glycogen synthesis appeared linear and was faster with FRU (8.1 ± 0.6 g·h(-1), P < 0.001) and with GAL (8.6 ± 0.9 g·h(-1), P < 0.001) than with GLU (3.7 ± 0.5 g·h(-1)). CONCLUSIONS: When ingested at a rate designed to saturate intestinal CHO transport systems, MD drinks with added fructose or galactose were twice as effective as MD + glucose in restoring liver glycogen during short-term postexercise recovery.


Asunto(s)
Bebidas , Ciclismo/fisiología , Carbohidratos de la Dieta/administración & dosificación , Fructosa/administración & dosificación , Galactosa/administración & dosificación , Glucógeno Hepático/biosíntesis , Hígado/efectos de los fármacos , Adulto , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Humanos , Hígado/metabolismo , Glucógeno Hepático/análisis , Espectroscopía de Resonancia Magnética , Masculino , Resistencia Física/fisiología
13.
Clin Nutr ; 30(4): 494-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21288612

RESUMEN

BACKGROUND & AIMS: High protein diets have been shown to improve hepatic steatosis in rodent models and in high-fat fed humans. We therefore evaluated the effects of a protein supplementation on intrahepatocellular lipids (IHCL), and fasting plasma triglycerides in obese non diabetic women. METHODS: Eleven obese women received a 60 g/day whey protein supplement (WPS) for 4-weeks, while otherwise nourished on a spontaneous diet, IHCL concentrations, visceral body fat, total liver volume (MR), fasting total-triglyceride and cholesterol concentrations, glucose tolerance (standard 75 g OGTT), insulin sensitivity (HOMA IS index), creatinine clearance, blood pressure and body composition (bio-impedance analysis) were assessed before and after 4-week WPS. RESULTS: IHCL were positively correlated with visceral fat and total liver volume at inclusion. WPS decreased significantly IHCL by 20.8 ± 7.7%, fasting total TG by 15 ± 6.9%, and total cholesterol by 7.3 ± 2.7%. WPS slightly increased fat free mass from 54.8 ± 2.2 kg to 56.7 ± 2.5 kg, p = 0.005). Visceral fat, total liver volume, glucose tolerance, creatinine clearance and insulin sensitivity were not changed. CONCLUSIONS: WPS improves hepatic steatosis and plasma lipid profiles in obese non diabetic patients, without adverse effects on glucose tolerance or creatinine clearance. TRIAL NUMBER: NCT00870077, ClinicalTrials.gov.


Asunto(s)
Colesterol/sangre , Proteínas de la Leche/farmacología , Obesidad/tratamiento farmacológico , Triglicéridos/sangre , Adulto , Aminoácidos/efectos de los fármacos , Glucemia/análisis , Presión Sanguínea/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Cromo , Creatinina/metabolismo , Dieta , Suplementos Dietéticos , Ayuno , Hígado Graso/tratamiento farmacológico , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/sangre , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Hígado/metabolismo , Ácidos Nicotínicos , Tamaño de los Órganos , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...