Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(7): 4318-4329, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022534

RESUMEN

The properties and structure of the crystalline lens change as time after death passes. Some experiments have suggested that these might be used to estimate the postmortem interval (PMI). In this study, the organization and texture of the rabbit lens were objectively evaluated as a function of the PMI using two-photon excitation fluorescence (TPEF) imaging microscopy. Between 24 h and 72 h, the lens presented a highly organized structure, although the fiber delineation was progressively vanishing. At 96 h, this turned into a homogeneous pattern where fibers were hardly observed. This behaviour was similar for parameters providing information on tissue texture. On the other hand, the fiber density of the lens is linearly reduced with the PMI. On average, density at 24 h was approximately two-fold when compared to 96 h after death. The present results show that TPEF microscopy combined with different quantitative tools can be used to objectively monitor temporal changes in the lens fiber organization after death. This might help to estimate the PMI, which is one of the most complex problems in forensic science.

2.
Biomed Opt Express ; 15(5): 3251-3264, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855691

RESUMEN

Aging induces cardiac remodeling, resulting in an increase in the risk of suffering heart diseases, including heart failure. Collagen deposition increases with age and, together with sarcomeric changes in cardiomyocytes, may lead to ventricular stiffness. Multiphoton (MP) microscopy is a useful technique to visualize and detect variations in cardiac structures in a label free fashion. Here, we propose a method based on MP imaging (both two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) modalities) to explore and objectively quantify age-related structural differences in various components of cardiac tissues. Results in transmural porcine left ventricle (LV) sections reveal significant differences when comparing samples from young and old animals. Collagen and myosin SHG signals in old specimens are respectively 3.8x and >6-fold larger than in young ones. Differences in TPEF signals from cardiomyocyte were ∼3x. Moreover, the increased amount of collagen in old specimens results in a more organized pattern when compared to young LV tissues. Since changes in collagen and myosin are associated with cardiac dysfunction, the technique used herein might be a useful tool to accurately predict and measure changes associated with age-related myocardium fibrosis, tissue remodeling and sarcomeric alterations, with potential implications in preventing heart disease.

3.
J Imaging ; 10(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38392091

RESUMEN

The optical quality of an image depends on both the optical properties of the imaging system and the physical properties of the medium the light passes while travelling from the object to the image plane. The computation of the point spread function (PSF) associated to the optical system is often used to assess the image quality. In a non-ideal optical system, the PSF is affected by aberrations that distort the final image. Moreover, in the presence of turbid media, the scattering phenomena spread the light at wide angular distributions that contribute to reduce contrast and sharpness. If the mathematical degradation operator affecting the recorded image is known, the image can be restored through deconvolution methods. In some scenarios, no (or partial) information on the PSF is available. In those cases, blind deconvolution approaches arise as useful solutions for image restoration. In this work, a new blind deconvolution method is proposed to restore images using spherical aberration (SA) and scatter-based kernel filters. The procedure was evaluated in different microscopy images. The results show the capability of the algorithm to detect both degradation coefficients (i.e., SA and scattering) and to restore images without information on the real PSF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...