Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 480: 135779, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39298964

RESUMEN

Exposure to mercury (Hg) through fish consumption poses significant environmental and public health risks, given its status as one of the top ten hazardous chemicals. Aquaculture is expanding, driving a surge in demand for sustainable aquafeeds. Tuna byproducts, which are rich in protein, offer potential for aquafeed production, yet their use is challenged by the high content of heavy metals, particularly Hg. However, these byproducts also contain elevated levels of selenium (Se), which may counteract Hg adverse effects. This study examines the fate of dietary Hg and Se in an aquaculture model fish. Biomolecular speciation analyses through hyphenated analytical approaches were conducted on the water-soluble protein fraction of key organs of juvenile rainbow trout (Oncorhynchus mykiss) exposed to various combinations of Hg and Se species, including diets containing tuna byproducts, over a six-month period. The findings shed light on the dynamics of Hg and Se compounds in fish revealing potential Hg detoxification mechanisms through complexation with Hg-biomolecules, such as cysteine, glutathione, and metallothionein. Furthermore, the trophic transfer of selenoneine is demonstrated, revealing novel opportunities for sustainable aquafeed production. Understanding the interactions between Hg and Se in aquaculture systems is crucial for optimizing feed formulations and mitigating environmental risks. This research contributes to the broader goal of advancing sustainable practices in aquaculture while addressing food security challenges.

2.
Environ Res ; 261: 119767, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128663

RESUMEN

Human biomonitoring of toxic and essential trace elements is critically important for public health protection. Amazonian riverine communities exhibit distinctive dietary patterns, heavily reliant on locally sourced fish, fruits, and vegetables. These habits may result in unique exposure profiles compared to urban populations. However, comprehensive assessments of their exposure to toxic and essential metals are lacking, representing a critical gap in understanding the health risks faced by these communities. This study aimed to establish baseline levels of 21 metals and metalloids in human blood and explore the influence of sociodemographic factors, dietary habits, and lifestyle choices as potential sources of exposure to these elements. A cross-sectional biomonitoring investigation was conducted with 1,024 individuals from 13 communities in the Tapajós and Amazon Basins (Pará, Brazil). Most of the elements in study was determined for the first time in the region. Blood samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The levels of all elements were summarized by quantiles and compared with cutoff values from other Brazilian populations. Multiple linear regression was used to assess possible associations between element concentrations and sociodemographic characteristics, dietary habits, and lifestyle choices. High detection rates (64%-100%) were observed, indicating the widespread presence of these elements. Elevated blood concentrations were found for mercury (median 21.1 µg.L-1, interquartile range: 12-34 µg.L-1), selenium (median 166 µg.L-1, interquartile range: 137-208 µg.L-1), and lead (median 34 µg.L-1, interquartile range: 20.8-64 µg.L-1). Regression analysis revealed a positive association between mercury levels and fish consumption, while manioc flour intake showed no relationship to lead levels. In conclusion, our findings emphasize the need for continued monitoring and public policy development for these vulnerable populations. Further studies should assess long-term trends and investigate the health implications of prolonged exposure to diverse chemicals in Amazonian riverside communities.


Asunto(s)
Monitoreo Biológico , Estilo de Vida , Metaloides , Humanos , Brasil , Adulto , Masculino , Femenino , Persona de Mediana Edad , Adulto Joven , Adolescente , Estudios Transversales , Metaloides/sangre , Metales/sangre , Dieta , Anciano , Factores Sociodemográficos , Factores Socioeconómicos , Contaminantes Químicos del Agua/sangre , Contaminantes Químicos del Agua/análisis , Niño , Conducta Alimentaria , Población Rural/estadística & datos numéricos , Ríos/química
3.
Environ Sci Technol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018327

RESUMEN

This study pioneers the reporting of Se isotopes in marine top predators and represents the most extensive Se isotopic characterization in animals to date. A methodology based on hydride generation─multicollector inductively coupled plasma mass spectrometry─was established for such samples. The study was conducted on various internal organs of giant petrels (Macronectes spp.), encompassing bulk tissues (δ82/78Sebulk), distinct Se-specific fractions such as selenoneine (δ82/78SeSEN), and HgSe nanoparticles (δ82/78SeNPs). The δ82/78Sebulk results (2.0-5.6‰) offer preliminary insights into the fate of Se in key internal organs of seabirds, including the liver, the kidneys, the muscle, and the brain. Notably, the liver of all individuals was enriched in heavier Se isotopes compared to other examined tissues. In nanoparticle fraction, δ82/78Se varies significantly across individuals (δ82/78SeNPs from 0.6 to 5.7‰, n = 8), whereas it exhibits remarkable consistency among tissues and individuals for selenoneine (δ82/78SeSEN, 1.7 ± 0.3‰, n = 8). Significantly, there was a positive correlation between the shift from δ82/78Sebulk to δ82/78SeSEN and the proportion of Se present as selenoneine in the internal organs. This pilot study proves that Se species-specific isotopic composition is a promising tool for a better understanding of Se species fate, sources, and dynamics in animals.

4.
Food Chem ; 447: 138865, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38461719

RESUMEN

This study enhances the current limited understanding of the interaction between mercury (Hg) and selenium (Se) species in fish. Rainbow trout (Oncorhynchus mykiss), a model aquaculture fish, was exposed to Hg and Se species through controlled dietary conditions. Over a 6-month feeding trial, the impact of dietary Se on Hg bioaccumulation in fish, including flesh, brain, and liver, was tracked. Twelve dietary conditions were tested, including plant-based diets (0.25 µgSe g-1) and tuna byproduct diets (0.25 µgHg g-1, 8.0 µgSe g-1) enriched with methylmercury and/or Se as selenite or selenomethionine. The tuna byproduct diet resulted in lower Hg levels than the plant-based diets, with muscle Hg content below the European Commission's safe threshold. This study highlights the significant impact of specific Se compounds in the diet, particularly from tuna-based aquafeed, on Hg bioaccumulation. These promising results provide a strong recommendation for future use of fisheries byproducts in sustainable aquafeeds.


Asunto(s)
Mercurio , Oncorhynchus mykiss , Selenio , Animales , Selenometionina , Dieta/veterinaria , Ácido Selenioso
5.
Chemosphere ; 304: 135252, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691389

RESUMEN

Arsenic (As) is one of the main toxic elements of geogenic origin that impact groundwater quality and human health worldwide. In some groundwater wells of the Sologne region (Val de Loire, France), drilled in a confined aquifer, As concentrations exceed the European drinking water standard (10 µg L-1). The monitoring of one of these drinking water wells showed As concentrations in the range 20-25 µg L-1. The presence of dissolved iron (Fe), low oxygen concentration and traces of ammonium indicated reducing conditions. The δ34SSO4 was anticorrelated with sulphate concentration. Drilling allowed to collect detrital material corresponding to a Miocene floodplain and crevasse splay with preserved plant debris. The level that contained the highest total As concentration was a silty-sandy clay containing 26.9 mg kg-1 As. The influence of alternating redox conditions on the behaviour of As was studied by incubating this material with site groundwater, in biotic or inhibited bacterial activities conditions, without synthetic organic nutrient supply, in presence of H2 during the reducing periods. The development of both AsV-reducing and AsIII-oxidising microorganisms in biotic conditions was evidenced. At the end of the reducing periods, total As concentration strongly increased in biotic conditions. The microflora influenced As speciation, released Fe and consumed nitrate and sulphate in the water phase. Microbial communities observed in groundwater samples strongly differed from those obtained at the end of the incubation experiment, this result being potentially related to influence of the sediment compartment and to different physico-chemical conditions. However, both included major Operating Taxonomic Units (OTU) potentially involved in Fe and S biogeocycles. Methanogens emerged in the incubated sediment presenting the highest solubilised As and Fe. Results support the hypothesis of in-situ As mobilisation and speciation mediated by active biogeochemical processes.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Agua Potable/química , Monitoreo del Ambiente , Agua Subterránea/química , Humanos , Sulfatos , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 831: 154901, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364144

RESUMEN

Differences in the source and behaviour of 129I compared to 127I isotopes have been described for a variety of surface environments, but little is known about the cycling rates of each isotope in terrestrial ecosystems. We developed a compartment model of the iodine cycle in a forest ecosystem, with a labile and non-labile pool to simplify the complex fate of iodine in the forest floor and soil. Simulations were performed using atmospheric 127I and 129I inputs for sites differing in climate, vegetation, and soil. In general, considering dry deposition in addition to wet deposition improved model simulations. Model results support the view that soil is the sink for atmospheric iodine deposited in forest ecosystems, while tree vegetation has little influence on long-term iodine budgets. Modelling also showed that iodine cycling reaches equilibrium after a period of about 5000 years, mainly due to a gradual incorporation of iodine into the bulk stabilised soil organic matter. At steady state, this pool of non-labile iodine in soil can retain about 20% of total deposition with a mean residence time of 900 years, while the labile iodine pool is renewed after 90 years. The proportions of modern anthropogenic 129I in each modelled pool reflect those of stable 127I at least several decades after input to the forest; this result explains why isotopic disequilibrium is common in field data analysis. Volatilisation plays a central role in regulating iodine storage in soil and, therefore, its residence time, while drainage is a minor export pathway, except at some calcareous sites. Dynamic modelling has been particularly helpful for gaining insight into the long-term response of iodine partitioning to continuous, single or even varying deposition. Our modelling study suggested that better estimates of dry deposition of atmospheric iodine, weathering of parent rock, and volatilisation of the deposited iodine from soil and vegetation will be required for reliable predictions of iodine cycling in specific forests, because these processes remain insufficiently explored.


Asunto(s)
Ecosistema , Yodo , Bosques , Yodo/metabolismo , Suelo , Árboles/metabolismo
7.
J Environ Radioact ; 248: 106872, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35430501

RESUMEN

Radionuclides 129I (t1/2 = 15.7 × 106 years) and 131I (t1/2 = 8.02 days) are both introduced into the environment as a result of nuclear human activities. Environmental transfer pathways and fluxes between and within ecosystems are essential information for risk assessment. In forest ecosystems, humus degradation over time could result in re-mobilization and then downward migration and/or volatilization of intercepted 129I. In order to estimate the scale of these processes, humus (mull and moder forms) sampled under deciduous and coniferous forests were spiked with 125I- (t1/2 = 59.4 days), as a surrogate for 129I, in order to study the evolution of its water-soluble and organic fractions as well as the volatilization rate during humus degradation at laboratory scale. To our knowledge, this is the first time that interactions between iodine and contrasting forms of forest humus have been investigated. The evolution of native stable iodine (127I) pools in unspiked humus was also studied. The nature of the humus' organic matter appears to be a factor that impacts on the proportions of water-soluble and organic fractions of iodine and on their evolution. Iodine-125 was mainly organically bound (fraction for mulls and moders: ∼54-59 and 41-49%, respectively) and no clear evolution was observed within the 4-month incubation period. A large decrease in 125I water-solubility occurred, being more marked for mull (from ∼14-32 to 3-7%) than for moder (from ∼21-37 to 7-19%) humus. By contrast, a significant fraction was not extractible (∼38-43%) and varied in inverse proportion to the water-soluble fraction, suggesting a stabilization of iodine in humus after wet deposit. The nature of the humus organic matter also impacted on 125I volatilization. Although of the same order of magnitude, the total volatilization of 125I was higher for moders (∼0.039-0.323%) than for mulls (∼0.015-0.023%) within the 4-month incubation period. Volatilization rates for mulls were correlated with the water-soluble fraction, implying that volatilization of 125I could occur from the humus solution. Our results showed that humus is thus a zone of iodine accumulation by association with organic matter and that potential losses by lixiviation are significantly more important compared to volatilization.


Asunto(s)
Yodo , Monitoreo de Radiación , Ecosistema , Bosques , Humanos , Yoduros , Suelo , Volatilización , Agua
8.
Environ Sci Technol ; 56(5): 3288-3298, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170956

RESUMEN

Birds are principally exposed to selenium (Se) through their diet. In long-lived and top predator seabirds, such as the giant petrel, extremely high concentrations of Se are found. Selenium speciation in biota has aroused great interest in recent years; however, there is a lack of information about the chemical form of Se in (sea)birds. The majority of publications focus on the growth performance and antioxidant status in broilers in relation to Se dietary supplementation. The present work combines elemental and molecular mass spectrometry for the characterization of Se species in wild (sea)birds. A set of eight giant petrels (Macronectes sp.) with a broad age range from the Southern Ocean were studied. Selenoneine, a Se-analogue of ergothioneine, was identified for the first time in wild avian species. This novel Se-compound, previously reported in fish, constitutes the major Se species in the water-soluble fraction of all of the internal tissues and blood samples analyzed. The levels of selenoneine found in giant petrels are the highest reported in animal tissues until now, supporting the trophic transfer in the marine food web. The characterization of selenoneine in the brain, representing between 78 and 88% of the total Se, suggests a crucial role in the nervous system. The dramatic decrease of selenoneine (from 68 to 3%) with an increase of Hg concentrations in the liver strongly supports the hypothesis of its key role in Hg detoxification.


Asunto(s)
Mercurio , Compuestos de Organoselenio , Selenio , Contaminantes Químicos del Agua , Animales , Pollos , Monitoreo del Ambiente , Histidina/análogos & derivados , Mercurio/análisis , Compuestos de Organoselenio/análisis , Selenio/análisis , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Process Impacts ; 24(9): 1430-1442, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35080575

RESUMEN

The speciation of both redox reactive and volatile selenium (Se) compounds, barely reported in pristine aquatic environments, has never been investigated in remote alpine lakes, considered as sensitive ecosystems to detect the effect of global change. This work presents an integrated investigation on Se distribution and speciation conducted in 20 high altitude pristine lakes from the central-western Pyrenees. Five seasonal sampling campaigns were carried out after snowmelt (June/July) and in early fall (October) for the period 2017-2019. Concentrations of total dissolved Se (TDSe) ranged from 7 to 78 ng L-1, with selenate being ubiquitously observed in most cases (median of 61% of TDSe). Selenite was only occasionally detected up to 4 ng L-1, therefore a fraction of TDSe was presumably in the forms of elemental Se(0) and/or selenides. Depth profiles obtained in different lakes showed the occurrence of such Se(-II, 0) pools in bottom hypoxic to anoxic waters. The production of volatile Se compounds presented a low median total concentration (TVSe) of 33 pg L-1 (range 3-120 pg L-1), mainly in the form of dimethylselenide in subsurface samples (median of 82% of TVSe). The Se concentration in lake waters was significantly correlated with the sulphate concentration (ρ = 0.93, p < 0.0001), demonstrating that it is influenced by erosion and dissolution of Se and S-enriched parent bedrocks. In addition, for Se depleted alpine lake-bedrock systems, long-range transport and wet atmospheric depositions represent a major source of Se for lake waters.


Asunto(s)
Lagos , Selenio , Ecosistema , Ácido Selénico , Ácido Selenioso , Selenio/análisis , España , Sulfatos
10.
Sci Total Environ ; 809: 151174, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699833

RESUMEN

Storage of selenium and iodine can greatly vary between forest ecosystems, but the influence of tree species on partitioning and recycling of those elements remains elusive. In this study, contents of Se and I were measured in tree compartments, litterfall, humus, and soil horizons in monospecific stands of Douglas fir, pine, spruce, beech, and oak under identical climatic and edaphic conditions. The cycle of each element was characterized in terms of stocks and fluxes. Lowest concentrations were in wood (Se: 8-13 µg kg-1; I: <16.5 µg kg-1). Senescing organs had higher Se and I content, than the living parts of trees due to direct exposure to atmospheric deposition, with some variation between coniferous and deciduous trees. For all stands, low amounts of Se and I were involved in biological cycle as reflected by low root uptake. In humus, the enrichment of elements greatly increased with the stage of organic matter (OM) degradation with average factors of 10 and 20 for Se and I. OM degradation and element persistence in humus was influenced by tree species. Deciduous trees, with low biomass, and fast degradation of OM stored less Se and I in humus compared to fir and spruce with high humus biomass. Interestingly, tree species did not affect soil reserves of Se and I. Concentration ranges were 331-690 µg Se kg-1 and 4.3-14.5 mg I kg-1. However, the divergent vertical profiles of the elements in the soil column indicated greater mobility of I. Selenium concentrations regularly decreased with depth in correlation with OM and Fe oxides content. For iodine, the maximum iodine concentration at a soil depth of 15 to 35 cm was caused by a parallel precipitation/sorption behavior of aluminium and organic iodine dissolved in the topsoil.


Asunto(s)
Yodo , Selenio , Ecosistema , Bosques , Suelo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...