RESUMEN
IMPORTANCE: The key atherosclerotic TMAO originates from the initial gut microbial conversion of L-carnitine and other dietary compounds into TMA. Developing therapeutic strategies to block gut microbial TMA production needs a detailed understanding of the different production mechanisms and their relative contributions. Recently, we identified a two-step anaerobic pathway for TMA production from L-carnitine through initial conversion by some microbes into the intermediate γBB which is then metabolized by other microbes into TMA. Investigational studies of this pathway, however, are limited by the lack of single microbes harboring the whole pathway. Here, we engineered E. fergusonii strain to harbor the whole two-step pathway and optimized the expression through cloning a specific chaperone from the original host. Inoculating germ-free mice with this recombinant E. fergusonii is enough to raise serum TMAO to pathophysiological levels upon L-carnitine feeding. This engineered microbe will facilitate future studies investigating the contribution of this pathway to cardiovascular disease.
Asunto(s)
Carnitina , Metilaminas , Ratones , Animales , Anaerobiosis , Modelos Animales de Enfermedad , Carnitina/metabolismo , Metilaminas/metabolismo , Redes y Vías Metabólicas/genética , Colina/metabolismoRESUMEN
AIMS: Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions. METHODS AND RESULTS: Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan). CONCLUSION: Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.
Asunto(s)
Microbioma Gastrointestinal , Infarto del Miocardio , Humanos , Ratones , Animales , Aminoácidos Aromáticos/metabolismo , Triptófano , Glutamina , Glucurónidos , Indoles/metabolismo , Progresión de la Enfermedad , TirosinaRESUMEN
BACKGROUND: Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention. METHODS: TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor-deficient (Ldlr-/-) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3-/-). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA. RESULTS: Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3-/- mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells-augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK. CONCLUSIONS: These results define a role for gut microbiota-generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress-related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.
Asunto(s)
Aneurisma de la Aorta Abdominal , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Porcinos , Ratones Endogámicos C57BL , Colina , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & controlRESUMEN
Recent studies show gut microbiota-dependent metabolism of dietary phenylalanine into phenylacetic acid (PAA) is critical in phenylacetylglutamine (PAGln) production, a metabolite linked to atherosclerotic cardiovascular disease (ASCVD). Accordingly, microbial enzymes involved in this transformation are of interest. Using genetic manipulation in selected microbes and monocolonization experiments in gnotobiotic mice, we identify two distinct gut microbial pathways for PAA formation; one is catalyzed by phenylpyruvate:ferredoxin oxidoreductase (PPFOR) and the other by phenylpyruvate decarboxylase (PPDC). PPFOR and PPDC play key roles in gut bacterial PAA production via oxidative and non-oxidative phenylpyruvate decarboxylation, respectively. Metagenomic analyses revealed a significantly higher abundance of both pathways in gut microbiomes of ASCVD patients compared with controls. The present studies show a role for these two divergent microbial catalytic strategies in the meta-organismal production of PAGln. Given the numerous links between PAGln and ASCVD, these findings will assist future efforts to therapeutically target PAGln formation in vivo.
Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Ratones , Animales , GlutaminaRESUMEN
BACKGROUND: The gut microbiota-dependent metabolite phenylacetylgutamine (PAGln) is both associated with atherothrombotic heart disease in humans, and mechanistically linked to cardiovascular disease pathogenesis in animal models via modulation of adrenergic receptor signaling. METHODS: Here we examined both clinical and mechanistic relationships between PAGln and heart failure (HF). First, we examined associations among plasma levels of PAGln and HF, left ventricular ejection fraction, and N-terminal pro-B-type natriuretic peptide in 2 independent clinical cohorts of subjects undergoing coronary angiography in tertiary referral centers (an initial discovery US Cohort, n=3256; and a validation European Cohort, n=829). Then, the impact of PAGln on cardiovascular phenotypes relevant to HF in cultured cardiomyoblasts, and in vivo were also examined. RESULTS: Circulating PAGln levels were dose-dependently associated with HF presence and indices of severity (reduced ventricular ejection fraction, elevated N-terminal pro-B-type natriuretic peptide) independent of traditional risk factors and renal function in both cohorts. Beyond these clinical associations, mechanistic studies showed both PAGln and its murine counterpart, phenylacetylglycine, directly fostered HF-relevant phenotypes, including decreased cardiomyocyte sarcomere contraction, and B-type natriuretic peptide gene expression in both cultured cardiomyoblasts and murine atrial tissue. CONCLUSIONS: The present study reveals the gut microbial metabolite PAGln is clinically and mechanistically linked to HF presence and severity. Modulating the gut microbiome, in general, and PAGln production, in particular, may represent a potential therapeutic target for modulating HF. REGISTRATION: URL: https://clinicaltrials.gov/; Unique identifier: NCT00590200 and URL: https://drks.de/drks_web/; Unique identifier: DRKS00020915.
Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Animales , Humanos , Ratones , Péptido Natriurético Encefálico , Volumen Sistólico/fisiología , Función Ventricular IzquierdaRESUMEN
Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.
Asunto(s)
Colina/análogos & derivados , Ritmo Circadiano/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Animales , Colina/administración & dosificación , Colina/metabolismo , Dieta Alta en Grasa , Inhibidores Enzimáticos/farmacología , Leptina/deficiencia , Liasas/efectos de los fármacos , Masculino , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/microbiologíaRESUMEN
AIMS: Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS: In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION: Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.
Asunto(s)
Liasas , Trombosis , Animales , Colina , Células Endoteliales/metabolismo , Humanos , Liasas/metabolismo , Metilaminas/metabolismo , Metilaminas/toxicidad , Ratones , TromboplastinaRESUMEN
The heightened cardiovascular disease (CVD) risk observed among omnivores is thought to be linked, in part, to gut microbiota-dependent generation of trimethylamine-N-oxide (TMAO) from L-carnitine, a nutrient abundant in red meat. Gut microbial transformation of L-carnitine into trimethylamine (TMA), the precursor of TMAO, occurs via the intermediate γ-butyrobetaine (γBB). However, the interrelationship of γBB, red meat ingestion and CVD risks, as well as the gut microbial genes responsible for the transformation of γBB to TMA, are unclear. In the present study, we show that plasma γBB levels in individuals from a clinical cohort (n = 2,918) are strongly associated with incident CVD event risks. Culture of human faecal samples and microbial transplantation studies in gnotobiotic mice with defined synthetic communities showed that the introduction of Emergencia timonensis, a human gut microbe that can metabolize γBB into TMA, is sufficient to complete the carnitine â γBB â TMA transformation, elevate TMAO levels and enhance thrombosis potential in recipients after arterial injury. RNA-sequencing analyses of E. timonensis identified a six-gene cluster, herein named the γBB utilization (gbu) gene cluster, which is upregulated in response to γBB. Combinatorial cloning and functional studies identified four genes (gbuA, gbuB, gbuC and gbuE) that are necessary and sufficient to recapitulate the conversion of γBB to TMA when coexpressed in Escherichia coli. Finally, reanalysis of samples (n = 113) from a clinical, randomized diet, intervention study showed that the abundance of faecal gbuA correlates with plasma TMAO and a red meat-rich diet. Our findings reveal a microbial gene cluster that is critical to dietary carnitine â γBB â TMA â TMAO transformation in hosts and contributes to CVD risk.
Asunto(s)
Enfermedades Cardiovasculares/genética , Carnitina/sangre , Carnitina/metabolismo , Microbioma Gastrointestinal/fisiología , Genes Bacterianos/genética , Familia de Multigenes , Carne Roja , Animales , Enfermedades Cardiovasculares/sangre , Clostridiales/genética , Clostridiales/metabolismo , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Humanos , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL , Estudios Observacionales como AsuntoRESUMEN
Clinical studies have demonstrated associations between circulating levels of the gut-microbiota-derived metabolite trimethylamine-N-oxide (TMAO) and stroke incident risk. However, a causal role of gut microbes in stroke has not yet been demonstrated. Herein we show that gut microbes, through dietary choline and TMAO generation, directly impact cerebral infarct size and adverse outcomes following stroke. Fecal microbial transplantation from low- versus high-TMAO-producing human subjects into germ-free mice shows that both TMAO generation and stroke severity are transmissible traits. Furthermore, employing multiple murine stroke models and transplantation of defined microbial communities with genetically engineered human commensals into germ-free mice, we demonstrate that the microbial cutC gene (an enzymatic source of choline-to-TMA transformation) is sufficient to transmit TMA/TMAO production, heighten cerebral infarct size, and lead to functional impairment. We thus reveal that gut microbiota in general, specifically the metaorganismal TMAO pathway, directly contributes to stroke severity.
Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Óxidos/metabolismo , Accidente Cerebrovascular/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Colina/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patologíaRESUMEN
The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has recently been linked to cardiovascular disease (CVD) pathogenesis, prompting the development of therapeutic strategies to reduce TMAO. Previous work has shown that experimental alteration of circulating TMAO levels via dietary alterations or inhibition of the host TMAO producing enzyme flavin containing monooxygenase 3 (FMO3) is associated with reorganization of host cholesterol and bile acid metabolism in mice. In this work, we set out to understand whether recently developed nonlethal gut microbe-targeting small molecule choline trimethylamine (TMA) lyase inhibitors also alter host cholesterol and bile acid metabolism. Treatment of mice with the mechanism-based choline TMA lyase inhibitor, iodomethylcholine (IMC), increased fecal neutral sterol loss in the form of coprostanol, a bacteria metabolite of cholesterol. In parallel, IMC treatment resulted in marked reductions in the intestinal sterol transporter Niemann-pick C1-like 1 (NPC1L1) and reorganization of the gut microbial community, primarily reversing choline supplemented diet-induced changes. IMC also prevented diet-driven hepatic cholesterol accumulation, causing both upregulation of the host hepatic bile acid synthetic enzyme CYP7A1 and altering the expression of hepatic genes critical for bile acid feedback regulation. These studies suggest that the gut microbiota-driven TMAO pathway is closely linked to both microbe and host sterol and bile acid metabolism. Collectively, as gut microbe-targeting choline TMA lyase inhibitors move through the drug discovery pipeline from preclinical models to human studies, it will be important to understand how these drugs impact both microbe and host cholesterol and bile acid metabolism.NEW & NOTEWORTHY The gut microbe-dependent metabolite trimethylamine-N-oxide (TMAO) has been strongly associated with cardiovascular mortality, prompting drug discovery efforts to identify points of therapeutic intervention within the microbe host TMAO pathway. Recently, mechanism-based small molecule inhibitors of the major bacterial trimethylamine (TMA) lyase enzymes have been developed, and these drugs show efficacy as anti-atherothrombotic agents. The novel findings of this study are that small molecule TMA lyase inhibition results in beneficial reorganization of host cholesterol and bile acid metabolism. This study confirms previous observations that the gut microbial TMAO pathway is intimately linked to host cholesterol and bile acid metabolism and provides further rationale for the development of small molecule choline TMA lyase inhibitors for the treatment of cardiometabolic disorders.
Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Animales , Colina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , RatonesRESUMEN
OBJECTIVE: Gut microbial metabolism of dietary choline, a nutrient abundant in a Western diet, produces trimethylamine (TMA) and the atherothrombosis- and fibrosis-promoting metabolite TMA-N-oxide (TMAO). Recent clinical and animal studies reveal that elevated TMAO levels are associated with heightened risks for both cardiovascular disease and incident chronic kidney disease development. Despite this, studies focusing on therapeutically targeting gut microbiota-dependent TMAO production and its impact on preserving renal function are limited. Approach and Results: Herein we examined the impact of pharmacological inhibition of choline diet-induced gut microbiota-dependent production of TMA, and consequently TMAO, on renal tubulointerstitial fibrosis and functional impairment in a model of chronic kidney disease. Initial studies with a gut microbial choline TMA-lyase mechanism-based inhibitor, iodomethylcholine, confirmed both marked suppression of TMA generation, and consequently TMAO levels, and selective targeting of the gut microbial compartment (ie, both accumulation of the drug in intestinal microbes and limited systemic exposure in the host). Dietary supplementation of either choline or TMAO significantly augmented multiple indices of renal functional impairment and fibrosis associated with chronic subcutaneous infusion of isoproterenol. However, the presence of the gut microbiota-targeting inhibitor iodomethylcholine blocked choline diet-induced elevation in TMAO, and both significantly improved decline in renal function, and significantly attenuated multiple indices of tubulointerstitial fibrosis. Iodomethylcholine treatment also reversed many choline diet-induced changes in cecal microbial community composition associated with TMAO and renal functional impairment. CONCLUSIONS: Selective targeting of gut microbiota-dependent TMAO generation may prevent adverse renal structural and functional alterations in subjects at risk for chronic kidney disease.
Asunto(s)
Bacterias/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Colina/farmacología , Inhibidores Enzimáticos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Riñón/efectos de los fármacos , Liasas/antagonistas & inhibidores , Metilaminas/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Colina/análogos & derivados , Modelos Animales de Enfermedad , Fibrosis , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Liasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/patologíaRESUMEN
Apolipoprotein A-I (apoA-I) is the major protein constituent of high-density lipoprotein (HDL) and a target of myeloperoxidase-dependent oxidation in the artery wall. In atherosclerotic lesions, apoA-I exhibits marked oxidative modifications at multiple sites, including Trp72 Site-specific mutagenesis studies have suggested, but have not conclusively shown, that oxidative modification of Trp72 of apoA-I impairs many atheroprotective properties of this lipoprotein. Herein, we used genetic code expansion technology with an engineered Saccharomyces cerevisiae tryptophanyl tRNA-synthetase (Trp-RS):suppressor tRNA pair to insert the noncanonical amino acid 5-hydroxytryptophan (5-OHTrp) at position 72 in recombinant human apoA-I and confirmed site-specific incorporation utilizing MS. In functional characterization studies, 5-OHTrp72 apoA-I (compared with WT apoA-I) exhibited reduced ABC subfamily A member 1 (ABCA1)-dependent cholesterol acceptor activity in vitro (41.73 ± 6.57% inhibition; p < 0.01). Additionally, 5-OHTrp72 apoA-I displayed increased activation and stabilization of paraoxonase 1 (PON1) activity (µmol/min/mg) when compared with WT apoA-I and comparable PON1 activation/stabilization compared with reconstituted HDL (WT apoA-I, 1.92 ± 0.04; 5-OHTrp72 apoA-I, 2.35 ± 0.0; and HDL, 2.33 ± 0.1; p < 0.001, p < 0.001, and p < 0.001, respectively). Following injection into apoA-I-deficient mice, 5-OHTrp72 apoA-I reached plasma levels comparable with those of native apoA-I yet exhibited significantly reduced (48%; p < 0.01) lipidation and evidence of HDL biogenesis. Collectively, these findings unequivocally reveal that site-specific oxidative modification of apoA-I via 5-OHTrp at Trp72 impairs cholesterol efflux and the rate-limiting step of HDL biogenesis both in vitro and in vivo.
Asunto(s)
5-Hidroxitriptófano/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteína A-I/metabolismo , Arildialquilfosfatasa/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/biosíntesis , Tirosina/metabolismo , 5-Hidroxitriptófano/genética , Transportador 1 de Casete de Unión a ATP/genética , Animales , Apolipoproteína A-I/genética , Arildialquilfosfatasa/genética , Transporte Biológico , Humanos , Ratones , Ratones Noqueados , Oxidación-Reducción , Unión ProteicaRESUMEN
Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite that enhances both platelet responsiveness and in vivo thrombosis potential in animal models, and TMAO plasma levels predict incident atherothrombotic event risks in human clinical studies. TMAO is formed by gut microbe-dependent metabolism of trimethylamine (TMA) moiety-containing nutrients, which are abundant in a Western diet. Here, using a mechanism-based inhibitor approach targeting a major microbial TMA-generating enzyme pair, CutC and CutD (CutC/D), we developed inhibitors that are potent, time-dependent, and irreversible and that do not affect commensal viability. In animal models, a single oral dose of a CutC/D inhibitor significantly reduced plasma TMAO levels for up to 3 d and rescued diet-induced enhanced platelet responsiveness and thrombus formation, without observable toxicity or increased bleeding risk. The inhibitor selectively accumulated within intestinal microbes to millimolar levels, a concentration over 1-million-fold higher than needed for a therapeutic effect. These studies reveal that mechanism-based inhibition of gut microbial TMA and TMAO production reduces thrombosis potential, a critical adverse complication in heart disease. They also offer a generalizable approach for the selective nonlethal targeting of gut microbial enzymes linked to host disease limiting systemic exposure of the inhibitor in the host.
Asunto(s)
Microbioma Gastrointestinal , Trombosis/microbiología , Animales , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Colina/farmacología , Dieta , Microbioma Gastrointestinal/efectos de los fármacos , Hexanoles/farmacología , Ratones Endogámicos C57BL , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Oxidorreductasas N-Desmetilantes/metabolismo , Agregación Plaquetaria/efectos de los fármacosRESUMEN
Using an untargeted metabolomics approach in initial (N = 99 subjects) and replication cohorts (N = 1,162), we discovered and structurally identified a plasma metabolite associated with cardiovascular disease (CVD) risks, N6,N6,N6-trimethyl-L-lysine (trimethyllysine, TML). Stable-isotope-dilution tandem mass spectrometry analyses of an independent validation cohort (N = 2,140) confirmed TML levels are independently associated with incident (3-year) major adverse cardiovascular event risks (hazards ratio [HR], 2.4; 95% CI, 1.7-3.4) and incident (5-year) mortality risk (HR, 2.9; 95% CI, 2.0-4.2). Genome-wide association studies identified several suggestive loci for TML levels, but none reached genome-wide significance; and d9(trimethyl)-TML isotope tracer studies confirmed TML can serve as a nutrient precursor for gut microbiota-dependent generation of trimethylamine (TMA) and the atherogenic metabolite trimethylamine N-oxide (TMAO). Although TML was shown to be abundant in both plant- and animal-derived foods, mouse and human fecal cultures (omnivores and vegans) showed slow conversion of TML to TMA. Furthermore, unlike chronic dietary choline, TML supplementation in mice failed to elevate plasma TMAO or heighten thrombosis potential in vivo. Thus, TML is identified as a strong predictor of incident CVD risks in subjects and to serve as a dietary precursor for gut microbiota-dependent generation of TMAO; however, TML does not appear to be a major microbial source for TMAO generation in vivo.
Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Lisina/análogos & derivados , Metabolómica , Metilaminas/metabolismo , Nutrientes/metabolismo , Anciano , Animales , Aterosclerosis/metabolismo , Carnitina , Colesterol/metabolismo , Colina , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Humanos , Lisina/sangre , Lisina/genética , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Factores de Riesgo , TrombosisRESUMEN
Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H2O2/Cl- system of leukocytes. At low molar ratio of oxidant to target protein Nε-lysine moiety, 2-AAA is formed via an initial Nε-monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein Nε-lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine Nε-dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl residues serves as a mechanism for producing 2-AAA and LysCN in vivo. These studies further support involvement of MPO-catalyzed oxidative processes in both the development of atherosclerosis and diabetes risk.
Asunto(s)
Ácido 2-Aminoadípico/metabolismo , Inflamación/metabolismo , Estrés Oxidativo/genética , Peroxidasa/genética , Proteínas/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Humanos , Peróxido de Hidrógeno/metabolismo , Ácido Hipocloroso/metabolismo , Inflamación/patología , Leucocitos/metabolismo , Leucocitos/patología , Lisina/metabolismo , Ratones , Ratones Noqueados , Nitrilos/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional/genética , Factores de Riesgo , Espectrometría de Masas en TándemRESUMEN
Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.
Asunto(s)
Plaquetas/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Trombosis/metabolismo , Animales , Calcio/metabolismo , Traumatismos de las Arterias Carótidas/patología , Ciego/microbiología , Cloruros , Colina/metabolismo , Dieta , Femenino , Compuestos Férricos , Vida Libre de Gérmenes , Humanos , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Trombosis/patologíaRESUMEN
The interaction of lecithin-cholesterol acyltransferase (LCAT) with apolipoprotein A-I (apoA-I) plays a critical role in high-density lipoprotein (HDL) maturation. We previously identified a highly solvent-exposed apoA-I loop domain (Leu(159)-Leu(170)) in nascent HDL, the so-called "solar flare" (SF) region, and proposed that it serves as an LCAT docking site (Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy, J. M., 3rd, Smith, J. D., Gogonea, V., and Hazen, S. L. (2007) Nat. Struct. Mol. Biol. 14, 861-868). The stability and role of the SF domain of apoA-I in supporting HDL binding and activation of LCAT are debated. Here we show by site-directed mutagenesis that multiple residues within the SF region (Pro(165), Tyr(166), Ser(167), and Asp(168)) of apoA-I are critical for both LCAT binding to HDL and LCAT catalytic efficiency. The critical role for possible hydrogen bond interaction at apoA-I Tyr(166) was further supported using reconstituted HDL generated from apoA-I mutants (Tyr(166) â Glu or Asn), which showed preservation in both LCAT binding affinity and catalytic efficiency. Moreover, the in vivo functional significance of NO2-Tyr(166)-apoA-I, a specific post-translational modification on apoA-I that is abundant within human atherosclerotic plaque, was further investigated by using the recombinant protein generated from E. coli containing a mutated orthogonal tRNA synthetase/tRNACUA pair enabling site-specific insertion of the unnatural amino acid into apoA-I. NO2-Tyr(166)-apoA-I, after subcutaneous injection into hLCAT(Tg/Tg), apoA-I(-/-) mice, showed impaired LCAT activation in vivo, with significant reduction in HDL cholesteryl ester formation. The present results thus identify multiple structural features within the solvent-exposed SF region of apoA-I of nascent HDL essential for optimal LCAT binding and catalytic efficiency.
Asunto(s)
Apolipoproteína A-I/química , Lipoproteínas HDL/química , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Animales , Humanos , Cinética , Ratones Endogámicos C57BL , Unión Proteica , Dominios y Motivos de Interacción de ProteínasRESUMEN
Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.g., intestinal contents, human feces) and reduce TMAO levels in mice fed a high-choline or L-carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e(-/-) mice without alterations in circulating cholesterol levels. The present studies suggest that targeting gut microbial production of TMA specifically and non-lethal microbial inhibitors in general may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases.
Asunto(s)
Aterosclerosis/tratamiento farmacológico , Colina/análogos & derivados , Tracto Gastrointestinal/microbiología , Hexanoles/administración & dosificación , Liasas/antagonistas & inhibidores , Metilaminas/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Colina/metabolismo , Dieta , Heces/química , Células Espumosas/metabolismo , Humanos , Liasas/metabolismo , Ratones , Ratones Endogámicos C57BL , MicrobiotaRESUMEN
Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.
Asunto(s)
Aterosclerosis/microbiología , Ciego/microbiología , Susceptibilidad a Enfermedades/microbiología , Tracto Gastrointestinal/microbiología , Microbiota/fisiología , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/sangre , Aterosclerosis/etiología , Colina/administración & dosificación , Dieta/efectos adversos , Susceptibilidad a Enfermedades/sangre , Susceptibilidad a Enfermedades/complicaciones , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Metilaminas/sangre , Metilaminas/metabolismo , Ratones Endogámicos AKR , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Especificidad de la EspecieRESUMEN
RATIONALE: Trimethylamine-N-oxide (TMAO), a gut microbial-dependent metabolite of dietary choline, phosphatidylcholine (lecithin), and l-carnitine, is elevated in chronic kidney diseases (CKD) and associated with coronary artery disease pathogenesis. OBJECTIVE: To both investigate the clinical prognostic value of TMAO in subjects with versus without CKD, and test the hypothesis that TMAO plays a direct contributory role in the development and progression of renal dysfunction. METHODS AND RESULTS: We first examined the relationship between fasting plasma TMAO and all-cause mortality over 5-year follow-up in 521 stable subjects with CKD (estimated glomerular filtration rate, <60 mL/min per 1.73 m(2)). Median TMAO level among CKD subjects was 7.9 µmol/L (interquartile range, 5.2-12.4 µmol/L), which was markedly higher (P<0.001) than in non-CKD subjects (n=3166). Within CKD subjects, higher (fourth versus first quartile) plasma TMAO level was associated with a 2.8-fold increased mortality risk. After adjustments for traditional risk factors, high-sensitivity C-reactive protein, estimated glomerular filtration rate, elevated TMAO levels remained predictive of 5-year mortality risk (hazard ratio, 1.93; 95% confidence interval, 1.13-3.29; P<0.05). TMAO provided significant incremental prognostic value (net reclassification index, 17.26%; P<0.001 and differences in area under receiver operator characteristic curve, 63.26% versus 65.95%; P=0.036). Among non-CKD subjects, elevated TMAO levels portend poorer prognosis within cohorts of high and low cystatin C. In animal models, elevated dietary choline or TMAO directly led to progressive renal tubulointerstitial fibrosis and dysfunction. CONCLUSIONS: Plasma TMAO levels are both elevated in patients with CKD and portend poorer long-term survival. Chronic dietary exposures that increase TMAO directly contributes to progressive renal fibrosis and dysfunction in animal models.