Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Phys ; 20(5): 815-821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799981

RESUMEN

Approaches to developing large-scale superconducting quantum processors must cope with the numerous microscopic degrees of freedom that are ubiquitous in solid-state devices. State-of-the-art superconducting qubits employ aluminium oxide (AlOx) tunnel Josephson junctions as the sources of nonlinearity necessary to perform quantum operations. Analyses of these junctions typically assume an idealized, purely sinusoidal current-phase relation. However, this relation is expected to hold only in the limit of vanishingly low-transparency channels in the AlOx barrier. Here we show that the standard current-phase relation fails to accurately describe the energy spectra of transmon artificial atoms across various samples and laboratories. Instead, a mesoscopic model of tunnelling through an inhomogeneous AlOx barrier predicts percent-level contributions from higher Josephson harmonics. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The presence and impact of Josephson harmonics has important implications for developing AlOx-based quantum technologies including quantum computers and parametric amplifiers. As an example, we show that engineered Josephson harmonics can reduce the charge dispersion and associated errors in transmon qubits by an order of magnitude while preserving their anharmonicity.

2.
J Phys Chem C Nanomater Interfaces ; 127(47): 23000-23009, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38053624

RESUMEN

In the present report, homochiral hydrogen-bonded assemblies of heavily N-doped (C9H6N6) heterocyclic triimidazole (TT) molecules on an Ag(111) substrate were investigated using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) techniques. The planar and prochiral TT molecules, which exhibit a threefold rotation symmetry and lack mirror symmetry when assembled on the substrate, carry multiple hydrogen-bonding donor and acceptor functionalities, inevitably leading to the formation of hexameric two-dimensionally extended assemblies that can be either homo- (RR/SS) or heterochiral (RS). Experimental STM data showing well-ordered homochiral domains and experimental LEED data are consistent with simulations assuming the R19.1° overlayer on the Ag(111) lattice. Importantly, we report the unexpected coincidence of spontaneous resolution with the condensation of neighboring islands in adjacent "Janus pairs". The islands are connected by a characteristic fault zone, an observation that we discuss in the context of the fairly symmetric molecule and its propensity to compromise and benefit from interisland bonding at the expense of lattice mismatches and strain in the defect zone. We relate this to the close to triangular shape and the substantial but weak bonding scheme beyond van der Waals (vdW) of the TT molecules, which is due to the three N-containing five-membered imidazole rings. Density functional theory (DFT) calculations show clear energetic differences between homochiral and heterochiral pairwise interactions, clearly supporting the experimental results.

3.
J Phys Chem Lett ; 13(32): 7504-7513, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35943183

RESUMEN

Host-guest architectures provide ideal systems for investigating site-specific physical and chemical effects. Condensation events in nanometer-sized confinements are particularly interesting for the investigation of intermolecular and molecule-surface interactions. They may be accompanied by conformational adjustments representing induced fit packing patterns. Here, we report that the symmetry of small clusters formed upon condensation, their registry with the substrate, their lateral packing, and their adsorption height are characteristically modified by the packing of cycloalkanes in confinements. While cyclopentane and cycloheptane display cooperativity upon filling of the hosting pores, cyclooctane and to a lesser degree cyclohexane diffusively redistribute to more favored adsorption sites. The dynamic behavior of cyclooctane is surprising at 5 K given the cycloalkane melting point of >0 °C. The site-specific modification of the interaction and behavior of adsorbates in confinements plays a crucial role in many applications of three-dimensional porous materials as gas storage agents or catalysts/biocatalysts.

4.
Commun Chem ; 4(1): 29, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36697553

RESUMEN

Acenes and azaacenes lie at the core of molecular materials' applications due to their important optical and electronic features. A critical aspect is provided by their heteroatom multiplicity, which can strongly affect their properties. Here we report pyrazinacenes containing the dihydro-decaazapentacene and dihydro-octaazatetracene chromophores and compare their properties/functions as a model case at an oxidizing metal substrate. We find a distinguished, oxidation-state-dependent conformational adaptation and self-assembly behaviour and discuss the analogies and differences of planar benzo-substituted decaazapentacene and octaazatetracene forms. Our broad experimental and theoretical study reveals that decaazapentacene is stable against oxidation but unstable against reduction, which is in contrast to pentacene, its C-H only analogue. Decaazapentacenes studied here combine a planar molecular backbone with conformationally flexible substituents. They provide a rich model case to understand the properties of a redox-switchable π-electronic system in solution and at interfaces. Pyrazinacenes represent an unusual class of redox-active chromophores.

5.
Beilstein J Nanotechnol ; 10: 706-717, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931212

RESUMEN

The characteristics of interaction between six transition-metal porphyrines and the Ag(111) surface are detailed here as resulted from DFT calculations. Van der Waals interactions as well as the strong correlation in 3d orbitals of transition metals were taken into account in all calculations, including the structural relaxation. For each system we investigate four relative positions of the metallic atom on top the surface. We show that the interaction between the transition metal and silver is the result of a combination between the dispersion interaction, charge transfer and weak chemical interaction. The detailed analysis of the physical properties, such as dipolar and magnetic moments and the molecule-surface charge transfer, analyzed for different geometric configurations allows us to propose qualitative models, relevant for the understanding of the self-assembly processes and related phenomena.

6.
Phys Chem Chem Phys ; 17(33): 21323-30, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25687823

RESUMEN

In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Celak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface.


Asunto(s)
ADN de Plantas/análisis , Plantas/genética , Espectrometría Raman , Chrysanthemum/genética , Genoma de Planta , Hojas de la Planta/genética , Rosa/genética , Sequoia/genética
7.
J Mol Model ; 20(4): 2220, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24728661

RESUMEN

The binding effects of Mg²âº, Ca²âº, and Cu²âº ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. Both Watson-Crick and Hoogsteen configurations of the base pairs were investigated. In Watson-Crick configuration, the metal was coordinated at N7 atom of guanine, while in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the geometric properties of the metal-GC base pairs structure, as well as the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen GC structures. For the geometric models used by us, the vibrational amplitudes of metallic atoms were stronger for wavenumbers lower than 500 cm⁻¹. This suggests that in the experimental studies on DNA the presence of the three metallic atoms (Mg, Ca, and Cu) can be explicitly detected at low frequencies.


Asunto(s)
Emparejamiento Base , Citosina/química , Guanina/química , Iones/química , Metales/química , Modelos Moleculares , Ácidos Nucleicos/química , Calcio/química , Cobre/química , Enlace de Hidrógeno , Magnesio/química , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...