Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 259: 121795, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889663

RESUMEN

Biological desulfurization under haloalkaline conditions has been applied worldwide to remove hydrogen sulfide (H2S) from sour gas steams. The process relies on sulfide-oxidizing bacteria (SOB) to oxidize H2S to elemental sulfur (S8), which can then be recovered and reused. Recently, a dual-reactor biological desulfurization system was implemented where an anaerobic (sulfidic) bioreactor was incorporated as an addition to a micro-oxic bioreactor, allowing for higher S8 selectivity by limiting by-product formation. The highly sulfidic bioreactor environment enabled the SOB to remove (poly)sulfides (Sx2-) in the absence of oxygen, with Sx2- speculated as a main substrate in the removal pathway, thus making it vital to understand its role in the process. The SOB are influenced by the oxidation-reduction potential (ORP) set-point of the micro-oxic bioreactor as it is used to control the product of oxidation (S8 vs. SO42-), while the uptake of Sx2- by SOB has been qualitatively linked to pH. Therefore, to quantify these effects, this work determined the concentration and speciation of Sx2- in the biological desulfurization process under various pH values and ORP set-points. The total Sx2- concentrations in the sulfidic zone increased at elevated pH (8.9) compared to low pH (< 8.0), with on average 3.3 ± 1.0 mM-S more Sx2-. Chain lengths varied, with S72- only doubling in concentration while S52- increased 9 fold, which is in contrast with observations from abiotic systems. Changes to the ORP set-point of the micro-oxic reactor did not produce substantial changes in Sx2- concentration in the sulfidic zone. This illustrates that the reduction degree of the SOB in the micro-oxic bioreactor does not enhance their ability to interact with Sx2- in the sulfidic bioreactor. This increased understanding of how both pH and ORP affect changes in Sx2- concentration and chain length can lead to improved efficiency and design of the dual-reactor biological desulfurization process.


Asunto(s)
Reactores Biológicos , Oxidación-Reducción , Sulfuros , Azufre , Sulfuros/química , Sulfuros/metabolismo , Concentración de Iones de Hidrógeno , Sulfuro de Hidrógeno/metabolismo
2.
J Hazard Mater ; 465: 133418, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183941

RESUMEN

Electrochemically mediated struvite precipitation (EMSP) offers a robust, chemical-free process towards phosphate and ammonium reclamation from nutrients-rich wastewater, i.e., swine wastewater. However, given the coexistence of heavy metal, struvite recovered from wastewater may suffer from heavy metal contamination. Here, we systematically investigated the fate of Cu2+, as a representative heavy metal, in the EMSP process and compared it with the chemical struvite precipitation (CSP) system. The results showed that Cu2+ was 100% transferred from solution to solid phase as a mixture of copper and struvite under pHi 9.5 with 2-20 mg/L Cu2+ in the CSP system, and varying pH would affect struvite production. In the EMSP system, the formation of struvite was not affected by bulk pH, and struvite was much less polluted by co-removed Cu2+ (24.4%) at pHi 7.5, which means we recovered a cleaner and safer product. Specifically, struvite mainly accumulates on the front side of the cathode. In contrast, the fascinating thing is that Cu2+ is ultimately deposited primarily to the back side of the cathode in the form of copper (hydro)oxides due to the distinct thickness of the local high pH layer on the two sides of the cathode. In turn, struvite and Cu (hydro)oxides can be harvested separately from the front and back sides of the cathode, respectively, facilitating the subsequent recycling of heavy metals and struvite. The contrasting fate of Cu2+ in the two systems highlights the merits of EMSP over conventional CSP in mitigating heavy metal pollution on recovered products, promoting the development of EMSP technology towards a cleaner recovery of struvite from waste streams.

3.
Environ Sci Technol ; 57(36): 13530-13540, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37639370

RESUMEN

Removal of hydrogen sulfide (H2S) can be achieved using the sustainable biological desulfurization process, where H2S is converted to elemental sulfur using sulfide-oxidizing bacteria (SOB). A dual-bioreactor process was recently developed where an anaerobic (sulfidic) bioreactor was used between the absorber column and micro-oxic bioreactor. In the absorber column and sulfidic bioreactor, polysulfides (Sx2-) are formed due to the chemical equilibrium between H2S and sulfur (S8). Sx2- is thought to be the intermediate for SOB to produce sulfur via H2S oxidation. In this study, we quantify Sx2-, determine their chain-length distribution under high H2S loading rates, and elucidate the relationship between biomass and the observed biological removal of sulfides under anaerobic conditions. A linear relationship was observed between Sx2- concentration and H2S loading rates at a constant biomass concentration. Increasing biomass concentrations resulted in a lower measured Sx2- concentration at similar H2S loading rates in the sulfidic bioreactor. Sx2- of chain length 6 (S62-) showed a substantial decrease at higher biomass concentrations. Identifying Sx2- concentrations and their chain lengths as a function of biomass concentration and the sulfide loading rate is key in understanding and controlling sulfide uptake by the SOB. This knowledge will contribute to a better understanding of how to reach and maintain a high selectivity for S8 formation in the dual-reactor biological desulfurization process.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuros , Biomasa , Azufre
4.
Sci Total Environ ; 897: 165372, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419356

RESUMEN

Extensive agricultural activities have been shown to degrade soils, promoting research into improving soil quality. One such method is to increase the amount of organic matter in the soil, and domestic organic residues (DOR) are commonly used for this purpose. The environmental impact of DOR-derived products, from production to agricultural application, remains unclear in current research. With the aim to have a more comprehensive understanding of the challenges and opportunities in DOR management and reuse, this study extended the boundaries of Life Cycle Assessment (LCA) to include the transport, treatment, and application of treated DOR on a national level while also quantifying soil carbon sequestration that has been less addressed in relevant LCA studies. This study focuses on The Netherlands, where incineration predominates, as a representative case to explore the benefits and trade-offs of moving towards more biotreatment for DOR. Two main biotreatments were considered, composting and anaerobic digestion. The results indicate that biotreatment of kitchen and yard residues generally has higher environmental impacts than incineration, including increased global warming and fine particulate matter formation. However, biotreatment of sewage sludge has lower environmental impacts than incineration. Substitution of nitrogen and phosphorus fertilisers with compost reduces mineral and fossil resource scarcity. In fossil-based energy systems like The Netherlands, replacing incineration with anaerobic digestion yields the highest benefit for fossil resource scarcity (61.93 %) due to energy recovery from biogas and the predominant use of fossil resources in the Dutch energy system. These findings indicate that replacing incineration with biotreatment of DOR may not benefit all impact categories in LCA. The environmental performance of substituted products can significantly influence the environmental benefits of increased biotreatment. Future studies or implementation of increased biotreatment should consider trade-offs and local context.


Asunto(s)
Ambiente , Suelo , Animales , Agricultura/métodos , Incineración , Aguas del Alcantarillado , Estadios del Ciclo de Vida
5.
J Environ Manage ; 344: 118618, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459813

RESUMEN

Soil organic carbon (SOC) is essential for most soil functions. Changes in land use from natural land to cropland disrupt long-established SOC balances and reduce SOC levels. The intensive use of chemical fertilisers in modern agriculture accelerates the rate of SOC depletion. Domestic organic residues (DOR) are a valuable source of SOC replenishment with high carbon content. However, there is still a lack of knowledge and data regarding whether and to what extent DOR can contribute to replenishing SOC. This paper aims to unpack the potential of DOR as a SOC source. Total SOC demand and annual SOC loss are defined and calculated. The carbon flow within different DOR management systems is investigated in three countries (China, Australia, and The Netherlands). The results show that the total SOC demand is too large to be fulfilled by DOR in a short time. However, DOR still has a high potential as a source of SOC as it can mitigate the annual SOC loss by up to 100%. Achieving this 100% mitigation requires a shift to more circular management of DOR, in particular, more composting, and direct land application instead of landfilling and incineration (Australia and China), or a higher rate of source separation of DOR (The Netherlands). These findings form the basis for future research on DOR recycling as a SOC source.


Asunto(s)
Suelo , Administración de Residuos , Suelo/química , Carbono/análisis , Países Bajos , Agricultura/métodos , China , Australia
6.
Environ Sci Technol ; 57(31): 11561-11571, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498945

RESUMEN

Bioelectrochemical systems (BESs) are considered to be energy-efficient to convert ammonium, which is present in wastewater. The application of BESs as a technology to treat wastewater on an industrial scale is hindered by the slow removal rate and lack of understanding of the underlying ammonium conversion pathways. This study shows ammonium oxidation rates up to 228 ± 0.4 g-N m-3 d-1 under microoxic conditions (dissolved oxygen at 0.02-0.2 mg-O2/L), which is a significant improvement compared to anoxic conditions (120 ± 21 g-N m-3 d-1). We found that this enhancement was related to the formation of hydroxylamine (NH2OH), which is rate limiting in ammonium oxidation by ammonia-oxidizing microorganisms. NH2OH was intermediate in both the absence and presence of oxygen. The dominant end-product of ammonium oxidation was dinitrogen gas, with about 75% conversion efficiency in the presence of a microoxic level of dissolved oxygen and 100% conversion efficiency in the absence of oxygen. This work elucidates the dominant pathways under microoxic and anoxic conditions which is a step toward the application of BESs for ammonium removal in wastewater treatment.


Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/química , Aguas Residuales , Reactores Biológicos , Oxidación-Reducción , Oxígeno , Nitrógeno/metabolismo
8.
Environ Res ; 232: 116346, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295594

RESUMEN

The application of organic amendments (OAs) obtained from biological treatment technologies is a common agricultural practice to increase soil functionality and fertility. OAs and their respective pretreatment processes have been extensively studied. However, comparing the properties of OAs obtained from different pretreatment processes remains challenging. In most cases, the organic residues used to produce OAs exhibit intrinsic variability and differ in origin and composition. In addition, few studies have focused on comparing OAs from different pretreatment processes in the soil microbiome, and the extent to which OAs affect the soil microbial community remains unclear. This limits the design and implementation of effective pretreatments aimed at reusing organic residues and facilitating sustainable agricultural practices. In this study, we used the same model residues to produce OAs to enable meaningful comparisons among compost, digestate, and ferment. These three OAs contained different microbial communities. Compost had higher bacterial but lower fungal alpha diversity than ferment and digestate. Compost-associated microbes were more prevalent in the soil than ferment- and digestate-associated microbes. More than 80% of the bacterial ASVs and fungal OTUs from the compost were detected 3 months after incorporation into the soil. However, the addition of compost had less influence on the resulting soil microbial biomass and community composition than the addition of ferment or digestate. Specific native soil microbes, members from Chloroflexi, Acidobacteria, and Mortierellomycota, were absent after ferment and digestate application. The addition of OAs increased the soil pH, particularly in the compost-amended soil, whereas the addition of digestate enhanced the concentrations of dissolved organic carbon (DOC) and available nutrients (such as ammonium and potassium). These physicochemical variables were key factors that influenced soil microbial communities. This study furthers our understanding of the effective recycling of organic resources for the development of sustainable soils.


Asunto(s)
Microbiota , Contaminantes del Suelo , Suelo/química , Agricultura , Contaminantes del Suelo/análisis , Tecnología , Bacterias/metabolismo , Microbiología del Suelo
9.
Water Res ; 236: 119948, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37098320

RESUMEN

Metal sulfide precipitation is a viable technology for high-yield metal recovery from hydrometallurgical streams, with the potential to streamline the process design. A single-stage elemental sulfur (S0)-reducing and metal sulfide precipitating process can optimize the operational and capital costs associated with this technology, boosting the competitiveness of this technology for wider industrial application. However, limited research is available on biological sulfur reduction at high temperature and low pH, frequent conditions of hydrometallurgical process waters. Here we assessed the sulfidogenic activity of an industrial granular sludge previously shown to reduce S0 under hot (60-80 °C) and acidic conditions (pH 3.6). A 4 L gas-lift reactor was operated for 206 days and fed continuously with culture medium and copper. During the reactor operation, we explored the effect of the hydraulic retention time, copper loading rates, temperature, and H2 and CO2 flow rates on the volumetric sulfide production rates (VSPR). A maximum VSPR of 274 ± 6 mg·L-1·d-1 was reached, a 3.9-fold increase of the VSPR previously reported with this inoculum in batch operation. Interestingly, the maximum VSPR was achieved at the highest copper loading rates. At the maximum copper loading rate (509 mg·L-1·d-1), a 99.96% copper removal efficiency was observed. 16 s rRNA gene amplicon sequencing revealed an increased abundance of reads assigned to Desulfurella and Thermoanaerobacterium in periods of higher sulfidogenic activity.


Asunto(s)
Cobre , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Sulfuros , Azufre , Oxidación-Reducción
10.
Water Res ; 231: 119604, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669305

RESUMEN

Phosphorus (P) is often regarded as the primary stimulant for eutrophication, while its importance as a crucial life element is also well acknowledged. Given its future scarcity, P recycling from waste streams is suggested and practiced. Electrochemically mediated precipitation (EMP) is a robust and chemical-free process for P removal and recovery, yet it requires further developments. The first generation of the CaCO3-packed electrochemical precipitation column successfully solved the problem of H+-OH- recombination, achieving enhanced P removal efficiency with less energy consumption but suffering from low Ca-phosphate purity in recovered products. Herein, a new concept of a basket-anode electrochemical system is proposed and validated to prevent direct H+-OH- recombination and enhance product purity. The CaCO3 pellets packed basket anode alleviates the OH- depletion by CaCO3-H+ interaction and provides extra Ca2+ for enhanced P removal. The novel structure of the basket anode, by its derived acidic anode region and alkaline cathode region, completely avoids the precipitation of Ca-phosphate on the packed CaCO3 and greatly facilitates the collection of high-quality Ca-phosphate product. Our results suggest that almost 100% of the removed P was in high-purity, highly crystalline Ca-phosphate on the cathode. The recovered products contained significantly more P (13.5 wt%) than in the previous study (0.1 wt%) at similar energy consumptions (29.8 kWh/kg P). The applied current density, pellets size, and influent P concentration were critical for P removal performance, product purity, and power consumption. We further demonstrated the long-term stability of this novel system and its technical and economic feasibility in treating real stored urine. Our study provides new cell architectural designs to enhance the performance of EMP systems and may inspire innovations and developments in other electrochemical water treatment processes.


Asunto(s)
Fosfatos , Fósforo , Precipitación Química , Electrodos , Reciclaje
11.
Trends Biotechnol ; 41(3): 323-330, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669946

RESUMEN

Stimulated by the desire to achieve a Net Zero energy economy, the demand for renewable fuels is growing rapidly. The production of toxic waste streams that accompanies the transition from fossil fuels to renewable fuels is often overlooked. These waste streams include, among others, thiols and ammonia, and benzene, toluene, and xylene (BTX). When suitable treatment technologies are available, these compounds can be converted to valuable nutrients. In this opinion article, we provide an overview of expected waste streams and their characteristics. We indicate future challenges for associated waste streams, such as the lag in developing resource recovery technologies. Furthermore, we discuss unexploited opportunities to recover valuable nutrients from these waste streams.


Asunto(s)
Contaminantes Ambientales , Energía Renovable
12.
Bioresour Technol ; 369: 128435, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481375

RESUMEN

Sulphide is a toxic and corrosive compound and requires removal from waste streams. Recent discoveries show that sulphide oxidising bacteria (SOB) from modern desulphurisation plants are able to spatially separate sulphide removal and oxygen reduction when exposed to intermittent anaerobic and aerobic environments. Here, SOB act as electron shuttles between electron donor and acceptor. The underlying mechanisms for electron shuttling are of yet unknown. To investigate the anaerobic sulphide removal of SOB, batch experiments and mathematical models were applied. The sulphide removal capacity decreased at increasing biomass concentrations. At 0.6 mgN/L SOB could remove up to 8 mgS/mgN in 30 min. It was found that biological activity determines sulphide removal, alongside chemical processes. Anaerobic oxidation of electron carriers was determined to only explain 0.1% of charge storage, where irreversible cleavage of long chain polysulphides could explain full sulphide storage. Different sulphide removal and intracellular storage processes are postulated.


Asunto(s)
Bacterias , Sulfuros , Anaerobiosis , Sulfuros/química , Modelos Teóricos , Oxidación-Reducción , Bacterias Anaerobias , Reactores Biológicos/microbiología
13.
Water Res ; 227: 119296, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351351

RESUMEN

For over 30 years, biological gas desulfurization under halo-alkaline conditions has been studied and optimized. This technology is currently applied in already 270 commercial installations worldwide. Sulfur particle separation, however, remains a challenge; a fraction of sulfur particles is often too small for liquid-solid separation with conventional separation technology. In this article, we report the effects of a novel sulfidic reactor, inserted in the conventional process set-up, on sulfur particle size and morphology. In the sulfidic reactor polysulfide is produced by the reaction of elemental sulfur particles and sulfide, which is again converted to elemental sulfur in a gas-lift reactor. We analyzed sulfur particles produced in continuous, long term lab-scale reactor experiments under various sulfide concentrations and sulfidic retention times. The analyses were performed with laser diffraction particle size analysis and light microscopy. These show that the smallest particles (< 1 µm) have mostly disappeared under the highest sulfide concentration (4.1 mM) and sulfidic retention time (45 min). Under these conditions also agglomeration of sulfur particles was promoted. Model calculations with thermodynamic and previously derived kinetic data on polysulfide formation confirm the experimental data on the removal of the smallest particles. Under the 'highest sulfidic pressure', the model predicts that equilibrium conditions are reached between sulfur, sulfide and polysulfide and that 100% of the sulfur particles <1 µm are dissolved by the (autocatalytic) formation of polysulfides. These experiments and modeling results demonstrate that the insertion of a novel sulfidic reactor in the conventional process set-up promotes the removal of the smallest individual sulfur particles and promotes the production of sulfur agglomerates. The novel sulfidic reactor is therefore a promising process addition with the potential to improve process operation, sulfur separation and sulfur recovery.


Asunto(s)
Sulfuros , Azufre , Oxidación-Reducción , Cinética , Reactores Biológicos
14.
ACS Sustain Chem Eng ; 10(29): 9411-9418, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35910292

RESUMEN

During electrochemical nutrient recovery, current and ion exchange membranes (IEM) are used to extract an ionic species of interest (e.g., ion) from a mixture of multiple ions. The species of interest (ion 1) has an opposing charge to the IEM. When ion 1 is extracted from the solution, the species fractions at the membrane and the adjunct boundary layers are affected. Hence, the species transport through the electrochemical system (ES) can no longer be described as electrodialysis-like. A dynamic state is observed in the compartments, where the ionic species are recovered. When the boundary layer-membrane interface is depleted, the IEM is at maximum current. If the ES is operated at a current higher than the maximum current, the fluxes of both ion 1 and other competing ions, with the same charge (ion 2), occur. This means, for example, ion 1 will be recovered, and the concentration of ion 2 will build up in time. Therefore, a steady state is never reached. Ideally, to prevent the effect of limiting current at the boundary layer-membrane interface, ES for nutrient recovery should be operated at low currents.

15.
J Hazard Mater ; 424(Pt D): 127696, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34823957

RESUMEN

We investigated the effect of polysulfide formation on properties of biologically produced elemental sulfur (S8) crystals, which are produced during biological desulfurization (BD) of gas. The recent addition of an anoxic-sulfidic reactor (AnSuR) to the BD process resulted in agglomerated particles with better settleability for S8 separation. In the AnSuR, polysulfides are formed by the reaction of bisulfide (HS-) with S8 and are subsequently oxidized to S8 in a gas-lift reactor. Therefore, sulfur particles from the BD are shaped (i.e. morphology and particle size) both by formation and dissolution. We assessed the reaction of HS- with S8 particles in anoxic, abiotic experiments in a batch reactor using two S8 samples from industrial BD reactors. Under these conditions, the sulfur particle surface became coarser and more porous, and in addition the smallest particles disappeared. Agglomerates initially fell apart but were reformed at a later stage. Moreover, we found different observed polysulfide formation rates for each S8 sample, which was related to the initial morphology and size. Our findings show that particle properties can be controlled abiotically and that settleability of S8 is increased by increasing both the HS--S8 ratio and retention time.


Asunto(s)
Sulfuros , Azufre , Oxidación-Reducción , Tamaño de la Partícula
16.
J Hazard Mater ; 424(Pt A): 127358, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879559

RESUMEN

Sulfide oxidizing bacteria (SOB) are widely applied in industry to convert toxic H2S into elemental sulfur. Haloalkaliphilic planktonic SOB can remove sulfide from solution under anaerobic conditions (SOB are 'charged'), and release electrons at an electrode (discharge of SOB). The effect of this electron shuttling on product formation and biomass growth is not known. Here, we study and demonstrate a continuous process in which SOB remove sulfide from solution in an anaerobic 'uptake chamber', and shuttle these electrons to the anode of an electrochemical cell, in the absence of dissolved sulfide. Two experiments over 31 and 41 days were performed. At a sulfide loading rate of 1.1 mmolS/day, electricity was produced continuously (3 A/m2) without dissolved sulfide in the anolyte. The main end product was sulfate (56% in experiment 1% and 78% in experiment 2), and 87% and 77% of the electrons in sulfide were recovered as electricity. It was found that the current density was dependent on the sulfide loading rate and not on the anode potential. Biological growth occurred, mainly at the anode as biofilm, in which the deltaproteobacterial genus Desulfurivibrio was dominating. Our results demonstrate a novel strategy to produce electricity from sulfide in an electrochemical system.


Asunto(s)
Electrones , Sulfuro de Hidrógeno , Bacterias , Reactores Biológicos , Electricidad , Oxidación-Reducción , Sulfuros
17.
Biotechnol Biofuels ; 14(1): 232, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872602

RESUMEN

BACKGROUND: Biotechnological processes for efficient resource recovery from residual materials rely on complex conversions carried out by reactor microbiomes. Chain elongation microbiomes produce valuable medium-chain carboxylates (MCC) that can be used as biobased starting materials in the chemical, agriculture and food industry. In this study, sunflower oil is used as an application-compatible solvent to accumulate microbially produced MCC during extractive lactate-based chain elongation. The MCC-enriched solvent is harvested as a potential novel product for direct application without further MCC purification, e.g., direct use for animal nutrition. Sunflower oil biocompatibility, in situ extraction performance and effects on chain elongation were evaluated in batch and continuous experiments. Microbial community composition and dynamics of continuous experiments were analyzed based on 16S rRNA gene sequencing data. Potential applications of MCC-enriched solvents along with future research directions are discussed. RESULTS: Sunflower oil showed high MCC extraction specificity and similar biocompatibility to oleyl alcohol in batch extractive fermentation of lactate and food waste. Continuous chain elongation microbiomes produced the MCC n-caproate (nC6) and n-caprylate (nC8) from L-lactate and acetate at pH 5.0 standing high undissociated n-caproic acid concentrations (3 g L-1). Extractive chain elongation with sunflower oil relieved apparent toxicity of MCC and production rates and selectivities reached maximum values of 5.16 ± 0.41 g nC6 L-1 d-1 (MCC: 11.5 g COD L-1 d-1) and 84 ± 5% (e- eq MCC per e- eq products), respectively. MCC were selectively enriched in sunflower oil to concentrations up to 72 g nC6 L-1 and 3 g nC8 L-1, equivalent to 8.3 wt% in MCC-enriched sunflower oil. Fermentation at pH 7.0 produced propionate and n-butyrate instead of MCC. Sunflower oil showed stable linoleic and oleic acids composition during extractive chain elongation regardless of pH conditions. Reactor microbiomes showed reduced diversity at pH 5.0 with MCC production linked to Caproiciproducens co-occurring with Clostridium tyrobutyricum, Clostridium luticellarii and Lactobacillus species. Abundant taxa at pH 7.0 were Anaerotignum, Lachnospiraceae and Sporoanaerobacter. CONCLUSIONS: Sunflower oil is a suitable biobased solvent to selectively concentrate MCC. Extractive reactor microbiomes produced MCC with improved selectivity and production rate, while downstream processing complexity was reduced. Potential applications of MCC-enriched solvents may include feed, food and biofuels purposes.

18.
Water Res ; 209: 117891, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34875541

RESUMEN

Phosphorus (P) is an essential element for the growth and reproduction of organisms. Unfortunately, the natural P cycle has been broken by the overexploitation of P ores and the associated discharge of P into water bodies, which may trigger the eutrophication of water bodies in the short term and possible P shortage soon. Consequently, technologies emerged to recover P from wastewater to mitigate pollution and exploit secondary P resources. Electrochemically induced phosphate precipitation has the merit of achieving P recovery without dosing additional chemicals via creating a localized high pH environment near the cathode. We critically reviewed the development of electrochemically induced precipitation systems toward P removal and recovery over the past ten years. We summarized and discussed the effects of pH, current density, electrode configuration, and water matrix on the performance of electrochemical systems. Next to ortho P, we identified the potential and illustrated the mechanism of electrochemical P removal and recovery from non-ortho P compounds by combined anodic or anode-mediated oxidation and cathodic reduction (precipitation). Furthermore, we assessed the economic feasibility of electrochemical methods and concluded that they are more suitable for treating acidic P-rich waste streams. Despite promising potentials and significant progress in recent years, the application of electrochemical systems toward P recovery at a larger scale requires further research and development. Future work should focus on evaluating the system's performance under long-term operation, developing an automatic process for harvesting P deposits, and performing a detailed economic and life-cycle assessment.

19.
ACS Omega ; 6(42): 27913-27923, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34722991

RESUMEN

This article presents a novel crystal agglomeration strategy for elemental sulfur (S) produced during biological desulfurization (BD). A key element is the nucleophilic dissolution of S by sulfide (HS-) to polysulfides (S x 2-), which was enhanced by a sulfide-rich, anoxic reactor. This study demonstrates that with enhanced S x 2- formation, crystal agglomerates are formed with a uniform size (14.7 ± 3.1 µm). In contrast, with minimal S x 2- formation, particle size fluctuates markedly (5.6 ± 5.9 µm) due to the presence of agglomerates and single crystals. Microscopic analysis showed that the uniformly sized agglomerates had an irregular structure, whereas the loose particles and agglomerates were more defined and bipyramidal. The irregular agglomerates are explained by dissolution of S by (poly)sulfides, which likely changed the crystal surface structure and disrupted crystal growth. Furthermore, S from S x 2- appeared to form at least 5× faster than from HS- based on the average S x 2- chain length of x ≈ 5, thereby stimulating particle agglomeration. In addition, microscopy suggested that S crystal growth proceeded via amorphous S globules. Our findings imply that the crystallization product is controlled by the balance between dissolution and formation of S. This new insight has a strong potential to prevent poor S settleability in BD.

20.
Front Bioeng Biotechnol ; 9: 697439, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485254

RESUMEN

Chain elongation fermentation allows for the synthesis of biobased chemicals from complex organic residue streams. To expand the product spectrum of chain elongation technology and its application range we investigated 1) how to increase selectivity towards branched chain elongation and 2) whether alternative branched carboxylates such as branched valerates can be used as electron acceptors. Elongation of isobutyrate elongation towards 4-methyl-pentanoate was achieved with a selectivity of 27% (of total products, based on carbon atoms) in a continuous system that operated under CO2 and acetate limited conditions. Increasing the CO2 load led to more in situ acetate formation that increased overall chain elongation rate but decreased the selectivity of branched chain elongation. A part of this acetate formation was related to direct ethanol oxidation that seemed to be thermodynamically coupled to hydrogenotrophic carboxylate reduction to corresponding alcohols. Several alcohols including isobutanol and n-hexanol were formed. The microbiome from the continuous reactor was also able to form small amounts of 5-methyl-hexanoate likely from 3-methyl-butanoate and ethanol as substrate in batch experiments. The highest achieved concentration of isoheptanoate was 6.4 ± 0.9 mM Carbon, or 118 ± 17 mg/L, which contributed for 7% to the total amount of products (based on carbon atoms). The formation of isoheptanoate was dependent on the isoform of branched valerate. With 3-methyl-butanoate as substrate 5-methylhexanoate was formed, whereas a racemic mixture of L/D 2-methyl-butanoate did not lead to an elongated product. When isobutyrate and isovalerate were added simultaneously as substrates there was a large preference for elongation of isobutyrate over isovalerate. Overall, this work showed that chain elongation microbiomes can be further adapted with supplement of branched-electron acceptors towards the formation of iso-caproate and iso-heptanoate as well as that longer chain alcohol formation can be stimulated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...