Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1294565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239352

RESUMEN

Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized ß2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered ß2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.


Asunto(s)
Linfocitos T CD8-positivos , Péptidos , Humanos , Receptores de Antígenos de Linfocitos T , Antígenos HLA/metabolismo , Antígenos de Neoplasias
2.
Front Immunol ; 12: 719116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484225

RESUMEN

Although T cell-recruiting CD3-binding bispecific antibodies (BiMAb) have been proven to be clinically effective for hematologic malignancies, the success of BiMAb targeting solid tumor-associated antigens (TAA) in carcinomas so far remains poor. We reasoned that provision of co-stimulatory BiMAb in combination with αTAA-αCD3 BiMAb would boost T cell activation and proliferative capacity, and thereby facilitate the targeting of weakly or heterogeneously expressed tumor antigens. Various αTAA-αCD3 and αTAA-αCD28 BiMAb in a tetravalent IgG1-Fc based format have been analyzed, targeting multiple breast cancer antigens including HER2, EGFR, CEA, and EpCAM. Moreover, bifunctional fusion proteins of αTAA-tumor necrosis factor ligand (TNFL) superfamily members including 4-1BBL, OX40L, CD70 and TL1A have been tested. The functional activity of BiMAb was assessed using co-cultures of tumor cell lines and purified T cells in monolayer and tumor spheroid models. Only in the presence of tumor cells, αTAA-αCD3 BiMAb activated T cells and induced cytotoxicity in vitro, indicating a strict dependence on cross-linking. Combination treatment of αTAA-αCD3 BiMAb and co-stimulatory αTAA-αCD28 or αTAA-TNFL fusion proteins drastically enhanced T cell activation in terms of proliferation, activation marker expression, cytokine secretion and tumor cytotoxicity. Furthermore, BiMAb providing co-stimulation were shown to reduce the minimally required dose to achieve T cell activation by at least tenfold. Immuno-suppressive effects of TGF-ß and IL-10 on T cell activation and memory cell formation could be overcome by co-stimulation. BiMAb-mediated co-stimulation was further augmented by immune checkpoint-inhibiting antibodies. Effective co-stimulation could be achieved by targeting a second breast cancer antigen, or by targeting fibroblast activation protein (FAP) expressed on another target cell. In tumor spheroids derived from pleural effusions of breast cancer patients, co-stimulatory BiMAb were essential for the activation tumor-infiltrating lymphocytes and cytotoxic anti-tumor responses against breast cancer cells. Taken together we showed that co-stimulation significantly potentiated the tumoricidal activity of T cell-activating BiMAb while preserving the dependence on TAA recognition. This approach could provide for a more localized activation of the immune system with higher efficacy and reduced peripheral toxicities.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Neoplasias de la Mama/inmunología , Citotoxicidad Inmunológica/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Animales , Anticuerpos Biespecíficos/inmunología , Antígenos de Neoplasias/inmunología , Biomarcadores , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunofenotipificación , Ratones , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Hepatol ; 75(5): 1058-1071, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34171437

RESUMEN

BACKGROUND & AIMS: Current antiviral therapies control but rarely eliminate HBV, leaving chronic HBV carriers at risk of developing hepatocellular carcinoma (HCC). Lacking or dysfunctional virus-specific adaptive immunity prevents control of HBV and allows the virus to persist. Restoring antiviral T-cell immunity could lead to HBV elimination and cure of chronically infected patients. METHODS: We constructed bispecific T-cell engager antibodies that are designed to induce antiviral immunity through simultaneous binding of HBV envelope proteins (HBVenv) on infected hepatocytes and CD3 or CD28 on T cells. T-cell engager antibodies were employed in co-cultures with healthy donor lymphocytes and HBV-infected target cells. Activation of the T-cell response was determined by detection of pro-inflammatory cytokines, effector function (by cytotoxicity) and antiviral effects. To study in vivo efficacy, immune-deficient mice were transplanted with HBVenv-positive and -negative hepatoma cells. RESULTS: The 2 T-cell engager antibodies synergistically activated T cells to become polyfunctional effectors that in turn elicited potent antiviral effects by killing infected cells and in addition controlled HBV via non-cytolytic, cytokine-mediated antiviral mechanisms. In vivo in mice, the antibodies attracted T cells specifically to the tumors expressing HBVenv resulting in T-cell activation, tumor infiltration and reduction of tumor burden. CONCLUSION: This study demonstrates that the administration of HBVenv-targeting T-cell engager antibodies facilitates a robust T-cell redirection towards HBV-positive target cells and provides a feasible and promising approach for the treatment of chronic viral hepatitis and HBV-associated HCC. LAY SUMMARY: T-cell engager antibodies are an interesting, novel therapeutic tool to restore immunity in patients with chronic hepatitis B. As bispecific antibodies, they bind envelope proteins on the surface of the hepatitis B virus (HBV) and CD3 or CD28 on T cells. This way, they induce a potent antiviral and cytotoxic T-cell response that leads to the elimination of HBV-positive cells. These bispecific T-cell engager antibodies are exciting therapeutic candidates for chronic hepatitis B and HBV-associated hepatocellular carcinoma.


Asunto(s)
Antígenos de la Hepatitis B/sangre , Hepatitis B/sangre , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo/métodos , Citometría de Flujo/estadística & datos numéricos , Hepatitis B/epidemiología , Antígenos de la Hepatitis B/análisis , Antígenos de la Hepatitis B/metabolismo , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/patogenicidad , Ratones , Estadísticas no Paramétricas , Linfocitos T/fisiología
4.
Cancer Res ; 77(2): 291-302, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27879269

RESUMEN

Elevated numbers of regulatory T cells (Treg) in patient tumors are known to inhibit efficient antitumor T-cell responses. To study the mechanisms controlling tumor rejection, we assessed different mouse models for Treg depletion. In Foxp3DTR knock-in mice, about 99% Treg depletion was achieved, resulting in complete rejection of transplanted HCmel12 melanomas in a CD8+ T-cell-dependent way. In contrast, about 90% Treg depletion obtained in BAC transgenic Foxp3.LuciDTR4 mice failed to induce complete rejection of HCmel12 melanomas, demonstrating that residual Tregs were able to control CD8+ T-cell responses against the tumor. Ninety-nine percent of Treg depletion provoked drastic changes in the tumor microenvironment, such as strong infiltration of CD8+ T cells and basophils. Intratumoral basophils enhanced CD8+ T-cell infiltration via production of chemokines CCL3 and CCL4; antibody-based blocking of these chemokines inhibited CD8+ T-cell infiltration. Therapeutic induction of basophilia by IL3/anti-IL3 antibody complexes, combined with transfer of CD8+ T cells, resulted in enhanced T-cell infiltration and tumor rejection. Our study identifies a critical role basophils play in tumor rejection and that this role can be exploited for therapeutic intervention. Cancer Res; 77(2); 291-302. ©2016 AACR.


Asunto(s)
Basófilos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/inmunología , Traslado Adoptivo , Animales , Separación Celular , Quimiotaxis de Leucocito/inmunología , Citometría de Flujo , Técnicas de Sustitución del Gen , Depleción Linfocítica/métodos , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Escape del Tumor/inmunología
5.
Immunol Lett ; 136(1): 13-20, 2011 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-21112354

RESUMEN

T-cell recognition of peptide-MHC complexes on APCs requires cell-cell interactions. The molecular events leading to T-cell activation have been extensively investigated, but the underlying physical binding forces between T-cells and APCs are largely unknown. We used single cell force spectroscopy for quantitation of interaction forces between T-cells and APCs presenting a tolerogenic peptide derived from myelin basic protein. When T-cells were brought into contact with peptide-loaded APCs, interaction forces increased with time from about 0.5nN after 10s interaction to about 15nN after 30min. In the absence of antigen, or when ICAM-1-negative APC was used, no increase in binding forces was observed. The temporal development of interaction forces correlated with the kinetics of immune synapse formation, as determined by LFA-1 and TCR enrichment at the interface of T-cell/APC conjugates using high throughput multispectral imaging flow cytometry. Together, these results suggest that ICAM-1/LFA-1 redistribution to the contact area is mainly responsible for development of strong interaction forces. High forces will keep T-cells and APCs in tight contact, thereby providing a platform for optimal interaction between TCRs and peptide-MHC complexes.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Vaina de Mielina/inmunología , Péptidos/inmunología , Linfocitos T/inmunología , Línea Celular , Molécula 1 de Adhesión Intercelular/inmunología , Microscopía de Fuerza Atómica , Espectrofotometría
6.
Proc Natl Acad Sci U S A ; 106(42): 17852-7, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19822763

RESUMEN

During adaptive immune responses, T lymphocytes recognize antigenic peptides presented by MHC molecules on antigen-presenting cells (APCs). This recognition results in the formation of a so-called immune synapse (IS) at the T-cell/APC interface, which is crucial for T-cell activation. The molecular composition of the IS has been extensively studied, but little is known about the biophysics and interaction forces between T cells and APCs. Here, we report the measurement of interaction forces between T cells and APCs employing atomic force microscopy (AFM). For these investigations, specific T cells were selected that recognize an antigenic peptide presented by MHC-class II molecules on APCs. Dynamic analysis of T-cell/APC interaction by AFM revealed that in the presence of antigen interaction forces increased from 1 to 2 nN at early time-points to a maximum of approximately 14 nN after 30 min and decreased again after 60 min. These data correlate with the kinetics of synapse formation that also reached a maximum after 30 min, as determined by high-throughput multispectral imaging flow cytometry. Because the integrin lymphocyte function antigen-1 (LFA-1) and its counterpart intercellular adhesion molecule-1 (ICAM-1) are prominent members of a mature IS, the effect of a small molecular inhibitor for LFA-1, BIRT377, was investigated. BIRT377 almost completely abolish the interaction forces, emphasizing the importance of LFA-1/ICAM-1-interactions for firm T-cell/APC adhesion. In conclusion, using biophysical measurements, this study provides precise values for the interaction forces between T cells and APCs and demonstrates that these forces develop over time and are highest when synapse formation is maximal.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Sinapsis Inmunológicas/fisiología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/fisiología , Adhesión Celular/fisiología , Comunicación Celular , Línea Celular , Hibridomas/inmunología , Hibridomas/fisiología , Imidazolidinas/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Ratones , Microscopía de Fuerza Atómica , Muramidasa/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T/fisiología
7.
J Immunol ; 168(4): 1950-60, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11823531

RESUMEN

The ER protein tapasin (Tpn) forms a bridge between MHC class I H chain (HC)/beta(2)-microglobulin and the TAP peptide transporter. The function of this TAP-associated complex was unclear because it was reported that soluble Tpn that has lost TAP interaction would be fully competent in terms of peptide loading and Ag presentation. We found, however, that only wild-type human Tpn (hTpn), but not three soluble hTpn variants, a transmembrane domain point mutant of hTpn (L410-->F), wild-type mouse Tpn, nor a mouse-human Tpn hybrid, fully up-regulated peptide-dependent Bw4 epitopes when expressed in Tpn-deficient.220.B*4402 cells. Consistent with suboptimal peptide loading, the t(1/2) of class I molecules was considerably reduced in the presence of soluble hTpn, hTpn-L410F, and murine Tpn. Furthermore, eluted peptide spectra and the class I-mediated inhibition of NK clones showed distinct differences to the hTpn transfectant. Only wild-type hTpn efficiently recruited HC and calreticulin (Crt) into complexes with TAP and endoplasmic reticulum p57 (ERp57). The L410F mutant was defective in TAP association, but bound to class I molecules, Crt, and ERp57. Mouse Tpn associated with human TAP and ERp57 on the one hand, and with HC and Crt on the other, but failed to recruit normal amounts of HLA class I molecules into the TAP complex. We conclude that the loading with peptides conferring high stability requires the Tpn-mediated introduction of HC into the TAP complex, whereas the mere interaction with Tpn is not sufficient.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Presentación de Antígeno , Antiportadores/fisiología , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulinas/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Animales , Antiportadores/química , Antiportadores/genética , Sitios de Unión , Células Clonales , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Antígenos HLA-B/metabolismo , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/genética , Sustancias Macromoleculares , Proteínas de Transporte de Membrana , Ratones , Mutación , Péptidos/metabolismo , Transporte de Proteínas , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA