Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diabetes ; 73(3): 490-496, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992197

RESUMEN

Diabetes affects the kidneys, and the presence of albuminuria reflects widespread vascular damage and is a risk factor for cardiovascular disease (CVD). Still, the pathophysiological association between albuminuria and CVD remains incompletely understood. Recent advances in noninvasive imaging enable functional assessment of coronary artery pathology and present an opportunity to explore the association between albuminuria and CVD. In this cross-sectional study, we evaluated the presence of subclinical coronary artery pathology in people with type 2 diabetes, free of overt CVD. Using multimodal imaging, we assessed the coronary microcalcification activity (18F-sodium fluoride positron emission tomography/computed tomography [PET/CT], plaque inflammation [64Cu-DOTATATE PET/CT], and myocardial flow reserve [82Rb PET/CT]). The study population consisted of 90 participants, stratified by albuminuria; 60 had historic or current albuminuria (urine albumin-to-creatinine ratio [UACR] ≥30 mg/g]), and 30 had normoalbuminuria (UACR <30 mg/g). We demonstrated that any albuminuria (historic or current) was associated with a more severe phenotype, in particular, higher levels of microcalcifications and impaired myocardial microvascular function; however, coronary inflammation activity was similar in people with and without albuminuria. Our findings establish a potential underlying mechanism connecting cardiovascular and kidney diseases and could indicate the initial stages of the cardiorenal syndrome.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Vasos Coronarios/diagnóstico por imagen , Radioisótopos de Cobre , Tomografía Computarizada por Tomografía de Emisión de Positrones , Albuminuria , Estudios Transversales , Enfermedades Cardiovasculares/epidemiología , Inflamación
2.
Front Microbiol ; 13: 988386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160201

RESUMEN

Introduction: Urinary tract infections (UTIs) with Pseudomonas aeruginosa are a severe problem in disposed patients in modern healthcare. Pseudomonas aeruginosa establishes recalcitrant biofilm infections and can develop antibiotic resistance. Gargling with avian egg yolk anti-Pseudomonas antibodies (IgY) has shown clinical effect in preventing onset of chronic P. aeruginosa lung infections in patients with cystic fibrosis (CF). Therefore, we speculated whether passive intravesically administered IgY immunotherapy could be a novel strategy against P. aeruginosa UTIs. Aim: To evaluate if prophylactic repurposing of anti-Pseudomonas IgY can prevent UTIs with P. aeruginosa in a UTI mouse model. Materials and methods: In vitro, P. aeruginosa (PAO1 and PAO3) was mixed with increasing concentrations of specific anti-Pseudomonas IgY (sIgY) or non-specific control IgY (cIgY) and/or freshly isolated human neutrophils. Bacterial growth was evaluated by the optical density at 600 nm. In vivo, via a temporary transurethral catheter, 10-week-old female Balb/c mice were intravesically infected with 50 ml of a bacterial suspension and sIgY, cIgY, or isotonic NaCl. IgY and NaCl were either co-instilled with the bacteria, or instilled prophylactically, 30 min prior to infection. The animals were euthanized 20 h after infection. Vesical bacteriology was quantified, and cytokine expression in the bladder homogenate was measured by multiplex cytokine assay. Results: In vitro, sIgY concentrations above 2.5% reduced bacterial growth in a dose-dependent manner. In vivo, a UTI lasting for minimum 7 days was established by installing 5 × 106 colony-forming units (CFU) of P. aeruginosa PAO1. sIgY reduced vesical bacterial load if co-installed with P. aeruginosa PAO1. Prophylactic sIgY and cIgY reduced bacterial load when compared to isotonic NaCl. CXCL2 and G-CSF were both increased in infected bladders compared to non-infected controls which had non-detectable levels. Co-installation of sIgY and bacteria nearly completely inhibited the inflammatory response. However, the cytokine levels in the bladder did not change after prophylactic administration of sIgY or cIgY. Conclusion: Prophylactic sIgY significantly reduces the amount of bacteria in the bladder in a mouse model of P. aeruginosa cystitis and may serve as a novel non-antibiotic strategy in preventing P. aeruginosa UTIs.

3.
Heliyon ; 8(12): e12304, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36593831

RESUMEN

Changes in cellular bioenergetics such as mitochondrial respiration and glycolysis may play a role in the pathogenesis of various diseases including type 1 diabetes (T1D). We used Seahorse extracellular flux technology to analyse the efficiency of glycolysis and mitochondrial oxidative phosphorylation in peripheral blood mononuclear cells (PBMCs) obtained from fresh blood samples from fifteen long-term T1D individuals with albuminuria (five females) with an average (±SD) age of 58 (±14) years and 15 age and sex-matched healthy non-diabetic controls. In T1D PBMCs, mitochondrial proton leak was higher (T1D: 21,3 ± 1,46 pmol/min; controls: 17,3 ± 1,24 pmol/min; p = 0,049) and glucose (5 mM) suppressed mitochondrial proton leak more than in healthy controls. Further, PBMCs from T1D individuals had higher glycolysis compared with healthy controls (T1D: 9,68 ± 0,94 mpH/min; controls: 7,07 ± 0,64 mpH/min; p = 0,032). Correlation analysis of circulating inflammatory factors identified Leukaemia Inhibitor factor 1 (LIF) being negatively correlated with PBMC glycolysis. Our results suggest that mitochondrial and glycolytic pathways of PBMCs from long-term T1D individuals with albuminuria might be dysfunctional, possibly due to increased cellular metabolic load and/or oxidative stress in which inflammatory factors could play a role.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...