Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149256

RESUMEN

Centrosomes rely upon proteins within the pericentriolar material to nucleate and organize microtubules. Several mRNAs also reside at centrosomes, although less is known about how and why they accumulate there. We previously showed that local Centrocortin (Cen) mRNA supports centrosome separation, microtubule organization, and viability in Drosophila embryos. Here, using Cen mRNA as a model, we examine mechanisms of centrosomal mRNA localization. We find that while the Cen N'-terminus is sufficient for protein enrichment at centrosomes, multiple domains cooperate to concentrate Cen mRNA at this location. We further identify an N'-terminal motif within Cen that is conserved among dynein cargo adaptor proteins and test its contribution to RNA localization. Our results support a model whereby Cen protein enables the accumulation of its own mRNA to centrosomes through a mechanism requiring active translation, microtubules, and the dynein motor complex. Taken together, our data uncover the basis of translation-dependent localization of a centrosomal RNA required for mitotic integrity.

2.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949648

RESUMEN

The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.


Asunto(s)
Anafase , Proteínas de Drosophila , Drosophila melanogaster , Dineínas , Microtúbulos , Animales , Dineínas/metabolismo , Dineínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Simulación de Dinámica Molecular , Mutación/genética , Huso Acromático/metabolismo , Huso Acromático/genética , Humanos , Mutación Missense
3.
J Cell Biol ; 223(5)2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448164

RESUMEN

The microtubule motor dynein plays a key role in cellular organization. However, little is known about how dynein's biosynthesis, assembly, and functional diversity are orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a genome-wide gRNA library, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints revealed co-functional proteins involved in many cellular processes, including several candidate novel regulators of core dynein functions. Further analysis of one of these factors, the RNA-binding protein SUGP1, indicates that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our data represent a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organization captured by our high-content imaging.


Asunto(s)
Dineínas , Microtúbulos , Humanos , Dineínas/genética , Microtúbulos/genética , Peroxisomas/genética , Sistemas CRISPR-Cas , Técnicas Genéticas
4.
Nat Struct Mol Biol ; 31(3): 476-488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38297086

RESUMEN

Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.


Asunto(s)
Proteínas de Drosophila , Cinesinas , Animales , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Tropomiosina/metabolismo , Drosophila/genética , Microtúbulos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
EMBO J ; 42(23): e114473, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37872872

RESUMEN

The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Humanos , Dineínas/metabolismo , Complejo Dinactina/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte Biológico/fisiología , Microtúbulos/metabolismo , Endosomas/metabolismo
6.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577480

RESUMEN

The cytoplasmic dynein-1 (dynein) motor organizes cells by shaping microtubule networks and moving a large variety of cargoes along them. However, dynein's diverse roles complicate in vivo studies of its functions significantly. To address this issue, we have used gene editing to generate a series of missense mutations in Drosophila Dynein heavy chain (Dhc). We find that mutations associated with human neurological disease cause a range of defects in larval and adult flies, including impaired cargo trafficking in neurons. We also describe a novel mutation in the microtubule-binding domain (MTBD) of Dhc that, remarkably, causes metaphase arrest of mitotic spindles in the embryo but does not impair other dynein-dependent processes. We demonstrate that the mitotic arrest is independent of dynein's well-established roles in silencing the spindle assembly checkpoint. In vitro reconstitution and optical trapping assays reveal that the mutation only impairs the performance of dynein under load. In silico all-atom molecular dynamics simulations show that this effect correlates with increased flexibility of the MTBD, as well as an altered orientation of the stalk domain, with respect to the microtubule. Collectively, our data point to a novel role of dynein in anaphase progression that depends on the motor operating in a specific load regime. More broadly, our work illustrates how cytoskeletal transport processes can be dissected in vivo by manipulating mechanical properties of motors.

7.
J Cell Biol ; 222(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37213090

RESUMEN

Regulated recruitment and activity of motor proteins is essential for intracellular transport of cargoes, including messenger ribonucleoprotein complexes (RNPs). Here, we show that orchestration of oskar RNP transport in the Drosophila germline relies on interplay between two double-stranded RNA-binding proteins, Staufen and the dynein adaptor Egalitarian (Egl). We find that Staufen antagonizes Egl-mediated transport of oskar mRNA by dynein both in vitro and in vivo. Following delivery of nurse cell-synthesized oskar mRNA into the oocyte by dynein, recruitment of Staufen to the RNPs results in dissociation of Egl and a switch to kinesin-1-mediated translocation of the mRNA to its final destination at the posterior pole of the oocyte. We additionally show that Egl associates with staufen (stau) mRNA in the nurse cells, mediating its enrichment and translation in the ooplasm. Our observations identify a novel feed-forward mechanism, whereby dynein-dependent accumulation of stau mRNA, and thus protein, in the oocyte enables motor switching on oskar RNPs by downregulating dynein activity.


Asunto(s)
Proteínas de Drosophila , Transporte de ARN , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Oocitos/metabolismo , Ribonucleoproteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909483

RESUMEN

The cytoplasmic dynein-1 (dynein) motor plays a key role in cellular organisation by transporting a wide variety of cellular constituents towards the minus ends of microtubules. However, relatively little is known about how the biosynthesis, assembly and functional diversity of the motor is orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a guide RNA library targeting 18,253 genes, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints generated from multiplexed images revealed co-functional genes involved in many cellular processes, including several candidate novel regulators of core dynein functions. Mechanistic analysis of one of these proteins, the RNA-binding protein SUGP1, provides evidence that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our dataset represents a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organisation that were captured by our high-content imaging.

9.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837088

RESUMEN

A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Animales , Arginina/genética , Transporte Axonal , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Dipéptidos/farmacología , Drosophila/genética , Demencia Frontotemporal/genética , Humanos , Microtúbulos/metabolismo , Neuronas Motoras/metabolismo
10.
SLAS Discov ; 25(9): 985-999, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32436764

RESUMEN

Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein's cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.


Asunto(s)
Dineínas Citoplasmáticas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Peroxisomas/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Transporte Biológico/efectos de los fármacos , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Humanos , Transporte Iónico/genética , Microtúbulos/efectos de los fármacos
11.
Nat Cell Biol ; 22(5): 570-578, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32341547

RESUMEN

Lissencephaly-1 (Lis1) is a key cofactor for dynein-mediated intracellular transport towards the minus-ends of microtubules. It remains unclear whether Lis1 serves as an inhibitor or an activator of mammalian dynein motility. Here we use single-molecule imaging and optical trapping to show that Lis1 does not directly alter the stepping and force production of individual dynein motors assembled with dynactin and a cargo adaptor. Instead, Lis1 promotes the formation of an active complex with dynactin. Lis1 also favours the recruitment of two dyneins to dynactin, resulting in increased velocity, higher force production and more effective competition against kinesin in a tug-of-war. Lis1 dissociates from motile complexes, indicating that its primary role is to orchestrate the assembly of the transport machinery. We propose that Lis1 binding releases dynein from its autoinhibited state, which provides a mechanistic explanation for why Lis1 is required for efficient transport of many dynein-associated cargos in cells.


Asunto(s)
Complejo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Línea Celular , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Células Sf9 , Porcinos
12.
J Cell Sci ; 133(7)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32253357

RESUMEN

This report summarizes an international conference on molecular machines convened at New York University, Abu Dhabi by Piergiorgio Percipalle, George Shubeita and Serdal Kirmizialtin. The meeting was conceived around the epistemological question of what do we understand, or not understand (if we have open minds), about the degree to which cells operate by the individual actions of single enzymes or non-catalytic protein effectors, versus combinations of these in which their heterotypic association creates an entity that is more finely tuned and efficient - a machine. This theme was explored through a vivid series of talks, summarizing the latest findings on macromolecular complexes that operate in the nucleus or cytoplasm.


Asunto(s)
Núcleo Celular , Citoplasma , Citosol , Emiratos Árabes Unidos
13.
Elife ; 72018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29944118

RESUMEN

Polarised mRNA transport is a prevalent mechanism for spatial control of protein synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the regulation of their movement are poorly understood. We have reconstituted microtubule minus end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a cis-acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport.


Asunto(s)
Proteínas de Drosophila/genética , Complejo Dinactina/genética , Dineínas/genética , Animales , Sitios de Unión , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Complejo Dinactina/química , Dineínas/química , Unión Proteica/genética , Multimerización de Proteína , Transporte de Proteínas/genética , Transporte de ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética
14.
Curr Biol ; 28(8): 1265-1272.e4, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29606421

RESUMEN

Mitochondria play fundamental roles within cells, including energy provision, calcium homeostasis, and the regulation of apoptosis. The transport of mitochondria by microtubule-based motors is critical for neuronal structure and function. This process allows local requirements for mitochondrial functions to be met and also facilitates recycling of these organelles [1, 2]. An age-related reduction in mitochondrial transport has been observed in neurons of mammalian and non-mammalian organisms [3-6], and has been proposed to contribute to the broader decline in neuronal function that occurs during aging [3, 5-7]. However, the factors that influence mitochondrial transport in aging neurons are poorly understood. Here we provide evidence using the tractable Drosophila wing nerve system that the cyclic AMP/protein kinase A (cAMP/PKA) pathway promotes the axonal transport of mitochondria in adult neurons. The level of the catalytic subunit of PKA decreases during aging, and acute activation of the cAMP/PKA pathway in aged flies strongly stimulates mitochondrial motility. Thus, the age-related impairment of transport is reversible. The expression of many genes is increased by PKA activation in aged flies. However, our results indicate that elevated mitochondrial transport is due in part to upregulation of the heavy chain of the kinesin-1 motor, the level of which declines during aging. Our study identifies evolutionarily conserved factors that can strongly influence mitochondrial motility in aging neurons.


Asunto(s)
Transporte Axonal/fisiología , Mitocondrias/fisiología , Neuronas/metabolismo , Factores de Edad , Animales , Axones/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Cinesinas/metabolismo , Cinesinas/fisiología , Mitocondrias/metabolismo , Orgánulos/metabolismo
15.
Elife ; 62017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406398

RESUMEN

The cytoplasmic dynein-1 (dynein) motor plays a central role in microtubule organisation and cargo transport. These functions are spatially regulated by association of dynein and its accessory complex dynactin with dynamic microtubule plus ends. Here, we elucidate in vitro the roles of dynactin, end-binding protein-1 (EB1) and Lissencephaly-1 (LIS1) in the interaction of end tracking and minus end-directed human dynein complexes with these sites. LIS1 promotes dynactin-dependent tracking of dynein on both growing and shrinking plus ends. LIS1 also increases the frequency and velocity of processive dynein movements that are activated by complex formation with dynactin and a cargo adaptor. This stimulatory effect of LIS1 contrasts sharply with its documented ability to inhibit the activity of isolated dyneins. Collectively, our findings shed light on how mammalian dynein complexes associate with dynamic microtubules and help clarify how LIS1 promotes the plus-end localisation and cargo transport functions of dynein in vivo.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Multimerización de Proteína
16.
Cell ; 169(1): 178-178.e1, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340345

RESUMEN

Many cells localize mRNAs to discrete locations in the cytoplasm. Coupled to local translation, this process affords precise spatial and temporal control of protein function. This SnapShot provides an overview of the key events in subcellular mRNA localization and highlights recent progress in understanding how cytoskeletal motors orchestrate mRNA trafficking.


Asunto(s)
ARN Mensajero/análisis , ARN Mensajero/genética , Transporte Activo de Núcleo Celular , Animales , Hongos/citología , Hongos/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(9): E1597-E1606, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28196890

RESUMEN

Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.


Asunto(s)
Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Enfermedades del Sistema Nervioso/genética , Animales , Línea Celular , Ligamiento Genético/genética , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutación , Enfermedades del Sistema Nervioso/metabolismo , Unión Proteica/genética , Células Sf9 , Porcinos
18.
Methods Mol Biol ; 1478: 145-160, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27730579

RESUMEN

Reverse genetics-the creation of mutations in preselected target genes-has until recently been a bottleneck in many Drosophila projects. The advent of clustered, regularly interspaced, short palindromic repeat (CRISPR) genome engineering systems has transformed this situation. A short time after the in vitro demonstration of target site cleavage by the RNA-guided endonuclease CRISPR-associated nuclease 9 (Cas9) (Jinek et al., Science 337:816-821, 2012), hundreds of fly researchers are using CRISPR technology to generate loss-of-function mutant alleles in specific genes, as well as to create specific point mutations or tagged protein products. It appears that most target genes can be edited with remarkably high efficiency, with engineered strains often available a few weeks after conception of a project. Here, we provide a step-by-step protocol for creating loss-of-function mutations in Drosophila using transgenic Cas9 sources, which is based on optimized reagents and procedures that have been evaluated in our laboratory. We also provide guidance on extending this protocol to produce precise genomic alterations by homology-directed repair in the presence of a donor sequence. Additional information and updates are available from our website, www.crisprflydesign.org .


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Endonucleasas/genética , Edición Génica , Genes de Insecto , Genoma , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Drosophila melanogaster/metabolismo , Endonucleasas/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Mutación INDEL , Mutagénesis Sitio-Dirigida , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Reparación del ADN por Recombinación , Genética Inversa/métodos
19.
Nat Methods ; 13(10): 852-4, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27595403

RESUMEN

We present tRNA-based vectors for producing multiple clustered regularly interspaced short palindromic repeats (CRISPR) single guide RNAs (sgRNAs) from a single RNA polymerase II or III transcript in Drosophila. The system, which is based on liberation of sgRNAs by processing flanking tRNAs, permits highly efficient multiplexing of Cas9-based mutagenesis. We also demonstrate that the tRNA-sgRNA system markedly increases the efficacy of conditional gene disruption by Cas9 and can promote editing by the recently discovered RNA-guided endonuclease Cpf1.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Drosophila/genética , ARN Guía de Kinetoplastida/genética , ARN de Transferencia/genética , Animales , Animales Modificados Genéticamente/genética , Sistemas CRISPR-Cas/genética , Drosophila/enzimología , Mutagénesis Sitio-Dirigida , Plásmidos , Edición de ARN/genética , ARN Polimerasa II/genética , ARN Polimerasa III/genética , Transcripción Genética
20.
Nat Protoc ; 11(9): 1711-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27560175

RESUMEN

There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. The study of axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, noninvasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the life span of an animal and thus for characterization of the relationship between cargo dynamics, neuronal aging and disease. Preparation of a sample for imaging takes ∼5 min, with transport typically filmed for 2-3 min per wing. We also document procedures for the quantification of transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in aging neurons.


Asunto(s)
Envejecimiento , Transporte Axonal , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Imagen Molecular/métodos , Neuronas/citología , Alas de Animales/citología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...