Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607000

RESUMEN

Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Triptófano , Quinurenina/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/patología , Mutación , Complejo Mediador/genética , Complejo Mediador/metabolismo
2.
Nat Commun ; 14(1): 4057, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429859

RESUMEN

Nearly 70% of Uterine fibroid (UF) tumors are driven by recurrent MED12 hotspot mutations. Unfortunately, no cellular models could be generated because the mutant cells have lower fitness in 2D culture conditions. To address this, we employ CRISPR to precisely engineer MED12 Gly44 mutations in UF-relevant myometrial smooth muscle cells. The engineered mutant cells recapitulate several UF-like cellular, transcriptional, and metabolic alterations, including altered Tryptophan/kynurenine metabolism. The aberrant gene expression program in the mutant cells is, in part, driven by a substantial 3D genome compartmentalization switch. At the cellular level, the mutant cells gain enhanced proliferation rates in 3D spheres and form larger lesions in vivo with elevated production of collagen and extracellular matrix deposition. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a platform for the broader scientific community to characterize genomics of recurrent MED12 mutations.


Asunto(s)
Leiomioma , Humanos , Leiomioma/genética , Miocitos del Músculo Liso , Mutación , Genómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Factores de Transcripción , Complejo Mediador/genética
3.
Fertil Steril ; 119(5): 746-750, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925057

RESUMEN

Endometriosis and adenomyosis are closely related disorders. Their pathophysiologies are extremely similar. Both tissues originate from the eutopically located intracavitary endometrium. Oligoclones of endometrial glandular epithelial cells with somatic mutations and attached stromal cells may give rise to endometriosis if they travel to peritoneal surfaces or the ovary via retrograde menstruation and/or may be entrapped in the myometrium to give rise to adenomyosis. In both instances, the endometrial cell populations possess survival and growth capabilities conferred by somatic epithelial mutations and epigenetic abnormalities in stromal cells. Activating mutations of KRAS are the most commonly found genetic variant in endometriotic epithelial cells, whereas the adenomyotic epithelial cells almost exclusively bear KRAS mutations. Epigenetic abnormalities in the stromal cells of endometriosis and adenomyosis are very similar and involve an abnormal expression pattern of nuclear receptors, including the steroid receptors. These epigenetic defects give rise to excessive local estrogen biosynthesis by aromatase and abnormal estrogen action via estrogen receptor-ß. Deficient progesterone receptor expression results in progesterone resistance in both endometriosis and adenomyosis.


Asunto(s)
Adenomiosis , Endometriosis , Enfermedades Uterinas , Femenino , Humanos , Endometriosis/metabolismo , Adenomiosis/genética , Adenomiosis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Enfermedades Uterinas/metabolismo , Endometrio/metabolismo , Estrógenos
4.
Fertil Steril ; 119(5): 869-882, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736810

RESUMEN

OBJECTIVE: To assess the cellular and molecular landscape of adenomyosis. DESIGN: Single-cell analysis of genome-wide messenger RNA (mRNA) expression (single-cell RNA sequencing) of matched tissues of endometrium, adenomyosis, and myometrium using relatively large numbers of viable cells. SETTING: Not applicable. PATIENT(S): Patients (n = 3, age range 40-44 years) undergoing hysterectomy for diffuse adenomyosis. MAIN OUTCOME MEASURE(S): Definition of the molecular landscape of matched adenomyotic, endometrial and myometrial tissues from the same uterus using single-cell RNA sequencing and comparison of distinct cell types in these tissues to identify disease-specific cell populations, abnormal gene expression and pathway activation, and mesenchymal-epithelial interactions. RESULT(S): The largest cell population in the endometrium was composed of closely clustered fibroblast groups, which comprise 36% of all cells and seem to originate from pericyte progenitors differentiating to estrogen/progesterone receptor-expressing endometrial stromal- cells. In contrast, the entire fibroblast population in adenomyosis comprised a larger (50%) portion of all cells and was not linked to any pericyte progenitors. Adenomyotic fibroblasts eventually differentiate into extracellular matrix protein-expressing fibroblasts and smooth muscle cells. Hierarchical clustering of mRNA expression revealed a unique adenomyotic fibroblast population that clustered transcriptomically with endometrial fibroblasts, suggestive of an endometrial stromal cell population serving as progenitors of adenomyosis. Four other adenomyotic fibroblast clusters with disease-specific transcriptomes were distinct from those of endometrial or myometrial fibroblasts. The mRNA levels of the natural WNT inhibitors, named, secreted frizzled-related proteins 1, 2, and 4, were higher in these 4 adenomyotic fibroblast clusters than in endometrial fibroblast clusters. Moreover, we found that multiple WNTs, which originate from fibroblasts and target ciliated and unciliated epithelial cells and endothelial cells, constitute a critical paracrine signaling network in adenomyotic tissue. Compared with endometrial tissue, unciliated and ciliated epithelial cells in adenomyosis comprised a significantly smaller portion of this tissue and exhibited molecular evidence of progesterone resistance and diminished regulation of estrogen signaling. CONCLUSION(S): We found a high degree of heterogeneity in fibroblast-like cells in the adenomyotic uterus. The WNT signaling involving differential expression of secreted frizzled-related proteins, which act as decoy receptors for WNTs, in adenomyotic fibroblasts may have a key role in the pathophysiology of this disease.


Asunto(s)
Adenomiosis , Endometriosis , Femenino , Humanos , Adulto , Adenomiosis/genética , Adenomiosis/metabolismo , Vía de Señalización Wnt/genética , Células Endoteliales , Transcriptoma , Endometrio/metabolismo , Estrógenos , ARN Mensajero/genética , Endometriosis/metabolismo
5.
Reprod Sci ; 30(2): 544-559, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35732928

RESUMEN

The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR predominantly occupied promoter regions, including the classical progesterone response element, whereas it bound mainly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL, with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq, and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation, and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor-associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.


Asunto(s)
Trabajo de Parto , Progesterona , Embarazo , Femenino , Humanos , Progesterona/metabolismo , Miometrio/metabolismo , Estudio de Asociación del Genoma Completo , Trabajo de Parto/genética , Trabajo de Parto/metabolismo , Unión Proteica , Complejo Represivo Polycomb 1/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(47): e2208886119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375056

RESUMEN

Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Leiomioma , Ácidos Ftálicos , Humanos , Femenino , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/orina , Quinurenina , Triptófano , Supervivencia Celular , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transportador de Aminoácidos Neutros Grandes 1 , Exposición a Riesgos Ambientales/efectos adversos , Leiomioma/inducido químicamente , Leiomioma/orina
8.
Hum Reprod ; 37(10): 2334-2349, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36001050

RESUMEN

STUDY QUESTION: What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing? SUMMARY ANSWER: We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues. WHAT IS KNOWN ALREADY: Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas. However, there is no information on the cellular heterogeneity in these tissues and the transcriptomic differences at the single-cell level between these tissues. STUDY DESIGN, SIZE, DURATION: We collected five leiomyoma and five myometrium samples from a total of eight patients undergoing hysterectomy. We then performed single-cell RNA sequencing to generate a cell atlas for both tissues. We utilized our single-cell sequencing data to define cell types, compare cell types by tissue type (leiomyoma versus myometrium) and determine the transcriptional changes at a single-cell resolution between leiomyomas and myometrium. Additionally, we performed MED12-variant analysis at the single-cell level to determine the genotype heterogeneity within leiomyomas. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected five MED12-variant positive leiomyomas and five myometrium samples from a total of eight patients. We then performed single-cell RNA sequencing on freshly isolated single-cell preparations. Histopathological assessment confirmed the identity of the samples. Sanger sequencing was performed to confirm the presence of the MED12 variant in leiomyomas. MAIN RESULTS AND ROLE OF CHANCE: Our data revealed previously unknown heterogeneity in the SMC, fibroblast cell and endothelial cell populations of myometrium and leiomyomas. We discovered the presence of two different lymphatic endothelial cell populations specific to uterine leiomyomas. We showed that both myometrium and MED12-variant leiomyomas are relatively similar in cellular composition but differ in cellular transcriptomic profiles. We found that fibroblasts influence the leiomyoma microenvironment through their interactions with endothelial cells, immune cells and SMCs. Variant analysis at the single-cell level revealed the presence of both MED12 variants as well as the wild-type MED12 allele in SMCs of leiomyomatous tissue. These results indicate genotype heterogeneity of cellular composition within leiomyomas. LARGE SCALE DATA: The datasets are available in the NCBI Gene Expression Omnibus (GEO) using GSE162122. LIMITATIONS, REASONS FOR CAUTION: Our study focused on MED12-variant positive leiomyomas for single-cell RNA sequencing analyses. Leiomyomas carrying other genetic rearrangements may differ in their cellular composition and transcriptomic profiles. WIDER IMPLICATIONS FOR THE FINDINGS: Our study provides a cellular atlas for myometrium and MED12-variant positive leiomyomas as defined by single-cell RNA sequencing. Our analysis provides significant insight into the differences between myometrium and leiomyomas at the single-cell level and reveals hitherto unknown genetic heterogeneity in multiple cell types within human leiomyomas. Our results will be important for future studies into the origin and growth of human leiomyomas. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by funding from the National Institute of Child Health and Human Development (HD098580 and HD088629). The authors declare no competing interests.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Células Endoteliales/metabolismo , Femenino , Humanos , Leiomioma/diagnóstico , Leiomioma/patología , Mutación , Miometrio/metabolismo , Análisis de la Célula Individual , Microambiente Tumoral , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/patología
9.
JCI Insight ; 7(9)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439171

RESUMEN

Greater than 25% of all men develop an inguinal hernia in their lifetime, and more than 20 million inguinal hernia repair surgeries are performed worldwide each year. The mechanisms causing abdominal muscle weakness, the formation of inguinal hernias, or their recurrence are largely unknown. We previously reported that excessively produced estrogen in the lower abdominal muscles (LAMs) triggers extensive LAM fibrosis, leading to hernia formation in a transgenic male mouse model expressing the human aromatase gene (Aromhum). To understand the cellular basis of estrogen-driven muscle fibrosis, we performed single-cell RNA sequencing on LAM tissue from Aromhum and wild-type littermates. We found a fibroblast-like cell group composed of 6 clusters, 2 of which were validated for their enrichment in Aromhum LAM tissue. One of the potentially novel hernia-associated fibroblast clusters in Aromhum was enriched for the estrogen receptor-α gene (Esr1hi). Esr1hi fibroblasts maximally expressed estrogen target genes and seemed to serve as the progenitors of another cluster expressing ECM-altering enzymes (Mmp3hi) and to upregulate expression of proinflammatory, profibrotic genes. The discovery of these 2 potentially novel and unique hernia-associated fibroblasts may lead to the development of novel treatments that can nonsurgically prevent or reverse inguinal hernias.


Asunto(s)
Hernia Inguinal , Músculos Abdominales , Animales , Modelos Animales de Enfermedad , Estrógenos , Fibroblastos , Fibrosis , Hernia Inguinal/cirugía , Humanos , Masculino , Ratones , Ratones Transgénicos
10.
Artículo en Inglés | MEDLINE | ID: mdl-35270433

RESUMEN

Fibroid etiology is poorly understood but is likely hormonally mediated. Therefore, we evaluated associations between midlife phthalates (hormone-altering chemicals) and prior fibroid diagnosis, and considered differences by weight gain status. Women (ages: 45−54; n = 754) self-reported past fibroid diagnosis. We pooled 1−4 urines collected after fibroid diagnosis over the consecutive weeks to analyze nine phthalate metabolites and calculate relevant molar sums (e.g., di(2-ethylhexyl) phthalate, ΣDEHP; anti-androgenic phthalates, ΣAA; all metabolites, ΣPhthalates). Using Poisson regression, we evaluated associations between phthalate biomarkers and the risk of having fibroid diagnosis. We explored if associations differed by weight gain from age 18 to 45−54 or in women diagnosed with fibroids within 5 years of phthalate assessment. Our major finding was that women had a 13% (RR: 1.13; 95%CI: 1.02, 1.26) and 16% (RR: 1.16; 95% CI: 1.03, 1.31) greater risk of prior fibroid diagnosis for each two-fold increase in ΣDEHP or ΣAA, respectively. These associations were strongest in women who became overweight/obese from age 18 to 45−54 and in those diagnosed <5 years before phthalate assessment. Based on these results, prospective studies should corroborate our findings related to associations between phthalates and fibroids, and may consider evaluating the role that weight gain may play in these associations.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Leiomioma , Ácidos Ftálicos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/orina , Femenino , Humanos , Leiomioma/epidemiología , Persona de Mediana Edad , Ácidos Ftálicos/orina , Estudios Prospectivos , Aumento de Peso
11.
Hum Reprod Update ; 28(4): 518-547, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35199155

RESUMEN

BACKGROUND: Uterine leiomyomas, also known as uterine fibroids or myomas, are the most common benign gynecological tumors and are found in women of reproductive and postmenopausal age. There is an exceptionally high prevalence of this tumor in women by the age of 50 years. Black women are particularly affected, with an increased incidence, earlier age of onset, larger and faster growing fibroids and greater severity of symptoms as compared to White women. Although advances in identifying genetic and environmental factors to delineate these fibroids have already been made, only recently has the role of epigenomics in the pathogenesis of this disease been considered. OBJECTIVE AND RATIONALE: Over recent years, studies have identified multiple epigenomic aberrations that may contribute to leiomyoma development and growth. This review will focus on the most recent discoveries in three categories of epigenomic changes found in uterine fibroids, namely aberrant DNA methylation, histone tail modifications and histone variant exchange, and their translation into altered target gene architecture and transcriptional outcome. The findings demonstrating how the altered 3D shape of the enhancer can regulate gene expression from millions of base pairs away will be discussed. Additionally, translational implications of these discoveries and potential roadblocks in leiomyoma treatment will be addressed. SEARCH METHODS: A comprehensive PubMed search was performed to identify published articles containing keywords relevant to the focus of the review, such as: uterine leiomyoma, uterine fibroids, epigenetic alterations, epigenomics, stem cells, chromatin modifications, extracellular matrix [ECM] organization, DNA methylation, enhancer, histone post-translational modifications and dysregulated gene expression. Articles until September 2021 were explored and evaluated to identify relevant updates in the field. Most of the articles focused on in the discussion were published between 2015 and 2021, although some key discoveries made before 2015 were included for background information and foundational purposes. We apologize to the authors whose work was not included because of space restrictions or inadvertent omission. OUTCOMES: Chemical alterations to the DNA structure and of nucleosomal histones, without changing the underlying DNA sequence, have now been implicated in the phenotypic manifestation of uterine leiomyomas. Genome-wide DNA methylation analysis has revealed subsets of either suppressed or overexpressed genes accompanied by aberrant promoter methylation. Furthermore, differential promoter access resulting from altered 3D chromatin structure and histone modifications plays a role in regulating transcription of key genes thought to be involved in leiomyoma etiology. The dysregulated genes function in tumor suppression, apoptosis, angiogenesis, ECM formation, a variety of cancer-related signaling pathways and stem cell differentiation. Aberrant DNA methylation or histone modification is also observed in altering enhancer architecture, which leads to changes in enhancer-promoter contact strength, producing novel explanations for the overexpression of high mobility group AT-hook 2 and gene dysregulation found in mediator complex subunit 12 mutant fibroids. While many molecular mechanisms and epigenomic features have been investigated, the basis for the racial disparity observed among those in the Black population remains unclear. WIDER IMPLICATIONS: A comprehensive understanding of the exact pathogenesis of uterine leiomyoma is lacking and requires attention as it can provide clues for prevention and viable non-surgical treatment. These findings will widen our knowledge of the role epigenomics plays in the mechanisms related to uterine leiomyoma development and highlight novel approaches for the prevention and identification of epigenome targets for long-term non-invasive treatment options of this significantly common disease.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Cromatina , Epigenómica , Femenino , Histonas , Humanos , Leiomioma/genética , Leiomioma/patología , Persona de Mediana Edad , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología
12.
Reprod Sci ; 29(3): 743-749, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064560

RESUMEN

Uterine leiomyomas (fibroids) are common benign tumors in women. The tryptophan metabolism through the kynurenine pathway plays important roles in tumorigenesis in general. Leiomyomas expressing mutated mediator complex subunit 12 (mut-MED12) were reported to contain significantly decreased tryptophan levels; the underlying mechanism and the role of the tryptophan metabolism-kynurenine pathway in leiomyoma tumorigenesis, however, remain unknown. We here assessed the expression and regulation of the key enzymes that metabolize tryptophan. Among these, the tissue mRNA levels of tryptophan 2,3-dioxygenase (TDO2), the rate limiting enzyme of tryptophan metabolism through the kynurenine pathway, was 36-fold higher in mut-MED12 compared to adjacent myometrium (P < 0.0001), and 14-fold higher compared to wild type (wt)-MED12 leiomyoma (P < 0.05). The mRNA levels of other tryptophan metabolizing enzymes, IDO1 and IDO2, were low and not significantly different, suggesting that TDO2 is the key enzyme responsible for reduced tryptophan levels in mut-MED12 leiomyoma. R5020 and medroxyprogesterone acetate (MPA), two progesterone agonists, regulated TDO2 gene expression in primary myometrial and leiomyoma cells expressing wt-MED12; however, this effect was absent or blunted in leiomyoma cells expressing G44D mut-MED12. These data suggest that MED12 mutation may alter progesterone-mediated TDO2 expression in leiomyoma, leading to lower levels of tryptophan in mut-MED12 leiomyoma. This highlights that fibroids can vary widely in their response to progesterone as a result of mutation status and provides some insight for understanding the effect of tryptophan-kynurenine pathway on leiomyoma tumorigenesis and identifying targeted interventions for fibroids based on their distinct molecular signatures.


Asunto(s)
Leiomioma/enzimología , Complejo Mediador/genética , Triptófano Oxigenasa/metabolismo , Adulto , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Mutación , Progestinas/farmacología , Células Tumorales Cultivadas
13.
Life Sci Alliance ; 4(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34593556

RESUMEN

Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.


Asunto(s)
Bacterias/metabolismo , Butiratos/administración & dosificación , Butiratos/metabolismo , Endometriosis/metabolismo , Endometriosis/microbiología , Microbioma Gastrointestinal , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Endometriosis/tratamiento farmacológico , Endometriosis/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Heces/química , Heces/microbiología , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Complejo Shelterina/metabolismo , Transducción de Señal/genética , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Transfección
14.
Stem Cell Reports ; 16(9): 2099-2106, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34388365

RESUMEN

Uterine leiomyoma (LM) is the most common tumor in women. Via its receptor (PGR) expressed in differentiated LM cells, progesterone stimulates paracrine signaling that induces proliferation of PGR-deficient LM stem cells (LSCs). Antiprogestins shrink LM but tumors regrow after treatment cessation possibly due to persisting LSCs. Using sorted primary LM cell populations, we found that the PGR gene locus and its target cistrome are hypermethylated in LSCs, inhibiting the expression of genes critical for progesterone-induced LSC differentiation. PGR knockdown shifted the transcriptome of total LM cells toward LSCs and increased global DNA methylation by regulating TET methylcytosine dioxygenases. DNA methylation inhibitor 5'-Aza activated PGR signaling, stimulated LSC differentiation, and synergized with antiprogestin to reduce tumor size in vivo. Taken together, targeting the feedback loop between DNA methylation and progesterone signaling may accelerate the depletion of LSCs through rapid differentiation and sensitize LM to antiprogestin therapy, thus preventing tumor regrowth.


Asunto(s)
Biomarcadores de Tumor , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Leiomioma/etiología , Células Madre Neoplásicas/metabolismo , Receptores de Progesterona/genética , Sitios de Unión , Secuencia de Consenso , Metilación de ADN/efectos de los fármacos , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunofenotipificación , Leiomioma/tratamiento farmacológico , Leiomioma/metabolismo , Leiomioma/patología , Modelos Biológicos , Motivos de Nucleótidos , Unión Proteica , Receptores de Progesterona/metabolismo
15.
Female Pelvic Med Reconstr Surg ; 27(8): 521-526, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261104

RESUMEN

OBJECTIVE: The aims of this study were to evaluate the biomolecular properties of vaginal and perineal granulation tissue in postpartum women and assess the potential impact of vaginal estrogen application. METHODS: We prospectively identified women referred to a subspecialty peripartum clinic between September 2016 and April 2018 who developed symptomatic perineal or vaginal granulation tissue. As part of routine clinical care, granulation tissue was excised from each participant by a urogynecologist and subjected to RNA extraction, real-time quantitative polymerase chain reaction, histologic evaluation, and immunohistochemistry. Serum steroid hormone levels were measured. Comparisons were made between participants who used topical vaginal estradiol (E2) and those who did not (non-E2 controls). RESULTS: Sixteen postpartum women were recruited for this pilot study. More than 30% of patients (n = 5, 31%) had used topical vaginal estradiol (E2) during their postpartum recovery. Histological appearance of granulation tissue evaluated by hematoxylin and eosin staining was similar in women treated with vaginal E2 and non-E2 controls. Both estrogen receptor α (ERα) and ERß mRNA and ERα protein were readily detectable in the granulation tissue of E2-treated women. Although not statistically significant, participants who used topical E2 developed granulation tissue that exhibited local estrogen-responsive gene upregulation. Serum levels of estrone, E2, dehydroepiandrosterone, progesterone, and testosterone did not differ between vaginal E2-treated patients and controls. CONCLUSIONS: Estrogen receptor α seems to be the predominant receptor mediating estrogen action in postpartum perineal and vaginal granulation tissue. Vaginal E2 use does not seem to affect serum levels of estrone, E2, dehydroepiandrosterone, progesterone, and testosterone in postpartum women.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Tejido de Granulación/efectos de los fármacos , Vagina/patología , Administración Tópica , Estradiol/administración & dosificación , Receptor alfa de Estrógeno , Estrógenos/administración & dosificación , Femenino , Humanos , Proyectos Piloto , Periodo Posparto
16.
Hum Reprod Update ; 27(6): 1086-1097, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34131719

RESUMEN

BACKGROUND: Adenomyosis, characterized by the presence of islands of endometrial tissue surrounded by hypertrophic smooth muscle cells within the myometrium, is one of the most challenging uterine disorders in terms of diagnosis and management. Adenomyosis presents with pelvic pain, excessive uterine bleeding, anemia and infertility. The relative contributions of abnormal endometrial tissue and myometrial smooth muscle cells to the development and growth of adenomyosis are not well understood. Moreover, there is continuing debate on the origins of adenomyosis; two competing theories describe the invagination of basal endometrium into the myometrium or the metaplastic differentiation of remnant endometrial stem/progenitor cells within the myometrium. OBJECTIVE AND RATIONALE: A recent series of next-generation sequencing (NGS) studies have provided the best scientific evidence thus far regarding the cellular origins of adenomyosis and the contributions of new signaling pathways to its pathogenesis, survival, and growth. These seminal studies on endometrium, adenomyosis and endometriosis demonstrate or support the following key points. (i) Mutations of KRAS map to both intracavitary endometrial tissue and proximally located adenomyotic samples, supporting the invagination theory of pathogenesis. Driver mutations found in smooth muscle cells of uterine fibroids are absent in adenomyosis. (ii) KRAS and other less frequent mutations are limited to endometrial-type epithelial cells. They are also observed in endometriosis, indicating that the disease process in adenomyosis is similar to that in endometriosis and distinct from that of uterine fibroids. (iii) Activating mutations of KRAS stimulate specific pathways to increase cell survival and proliferation and are associated with progesterone resistance in adenomyosis. Together, these findings suggest that distinct cell populations in eutopic endometrial tissue play key roles in the etiology of adenomyosis. Dependence on ovarian steroids and ovulatory cycles for disease severity is a unique feature of adenomyosis. In this context, common patterns of aberrant gene expression have been reported both in adenomyosis and endometriosis. These include pathways that favor increased estrogen biosynthesis, decreased estradiol metabolism, a unique estrogen receptor beta (ESR2)-driven inflammatory process, and progesterone resistance due to decreased progesterone receptor expression. Since adenomyosis exhibits a uniquely estrogen-driven inflammatory process and progesterone resistance, we discuss the interactions between these molecular characteristics and signaling pathways induced by the newly discovered KRAS mutations. SEARCH METHODS: We conducted a comprehensive search using PubMed for human and animal studies published until 2020 in the following areas: adenomyosis, endometriosis, endometrium, NGS, whole-exome sequencing, whole-genome sequencing, RNA sequencing, targeted deep sequencing, epigenetics, driver mutation, KRAS, progesterone resistance, estrogen action and steroid production. OUTCOMES: Targeted deep sequencing analyses of epithelial cells in adenomyosis and adjacent basalis endometrial glands demonstrated recurring KRAS mutations in both cell types. This finding suggests that adenomyosis originates from basalis endometrium. Epithelial cells of the endometrium, adjacent adenomyosis and co-occurring endometriosis also share identical KRAS mutations. These findings suggest both adenomyosis and endometriosis are oligoclonal tissues that arise from endometrial cell populations carrying a specific driver mutation that most commonly affects the KRAS gene. WIDER IMPLICATIONS: Adenomyosis usually follows an event such as pregnancy that has disrupted the integrity of the endometrial-myometrial junction followed by repetitious menstrual episodes that increase the likelihood of the entrapment of the basalis endometrium within the myometrium. Glandular epithelial cells carrying KRAS mutations and located within the deep crypts of basalis endometrium may become entrapped and invade myometrial tissue to give rise to adenomyosis. Evidence suggests that KRAS mutations may be responsible, in part, for previously observed phenomena such as prolonged cell survival and progesterone resistance in adenomyosis.


Asunto(s)
Adenomiosis , Endometriosis , Enfermedades Uterinas , Adenomiosis/genética , Adenomiosis/patología , Animales , Endometriosis/patología , Endometrio/patología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Uterinas/patología
17.
Cancer Sci ; 112(5): 2046-2059, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33338329

RESUMEN

Uterine leiomyosarcoma (LMS) is a rare but deadly disease. Due to poor understanding of the molecular and genetic causes of the disease, the diagnosis of LMS has been based primarily on histology. Nuclear atypia is one of hallmarks in LMS, however, it also occurs in 2 clinically benign variants, including smooth muscle tumors with fumarate hydratase alteration (SMT-FH) and leiomyoma with bizarre nuclei (LM-BN). In addition to nuclear atypia, many well recognized biomarkers used for LMS are also frequently overexpressed in LM-BN, and the histogenesis and molecular natures for LM-BN and LMS remain largely unknown. To characterize the molecular profiling of LMS, SMT-FH, and LM-BN, we performed integrated comprehensive genomic profiling including whole-genome sequencing (WGS) and RNA sequencing and genomic microarray analyses to assess genome-wide copy number alterations (CNAs) and immunohistochemistry (IHC) in all 3 tumor types. We found that both LM-BN and LMS showed genomic instability and harbored extensive CNAs throughout the whole genome. By contrast, the SMT-FH presented its characteristic 1q43-44 deletions in all cases tested, with minimal CNAs in the rest of genomic regions. Further analyses revealed that LMS and LM-BN groups showed similar patterns of CNAs that are tended to cluster together and separated from the SMT-FH group. The integrated molecular profiling enabled the detection of novel and traditional biomarkers and showed excellent discrimination between LM-BN and LMS. Our study suggests that LM-BN, despite having similar nuclear atypia to SMT-FH, showed similar genomic instability but distinct genomic alterations with its malignant counterpart of LMS. The integrated molecular profiling is of clinical importance in characterizing these rare uterine smooth muscle tumors.


Asunto(s)
Leiomioma/genética , Leiomioma/patología , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Adulto , Biomarcadores de Tumor , Núcleo Celular/patología , Femenino , Fumarato Hidratasa/genética , Eliminación de Gen , Dosificación de Gen , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Músculo Liso , Necrosis , Análisis de Componente Principal , Análisis de Secuencia de ARN/métodos , Análisis de Matrices Tisulares/métodos
18.
Endocrinology ; 161(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910181

RESUMEN

The biologically active estrogen estradiol has important roles in adult brain physiology and sexual behavior. A single gene, Cyp19a1, encodes aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol in the testis and brain of male mice. Estradiol formation was shown to regulate sexual activity in various species, but the relative contributions to sexual behavior of estrogen that arises in the brain versus from the gonads remained unclear. To determine the role of brain aromatase in regulating male sexual activity, we generated a brain-specific aromatase knockout (bArKO) mouse. A newly generated whole-body total aromatase knockout mouse of the same genetic background served as a positive control. Here we demonstrate that local aromatase expression and estrogen production in the brain is partially required for male sexual behavior and sex hormone homeostasis. Male bArKO mice exhibited decreased sexual activity in the presence of strikingly elevated circulating testosterone. In castrated adult bArKO mice, administration of testosterone only partially restored sexual behavior; full sexual behavior, however, was achieved only when both estradiol and testosterone were administered together. Thus, aromatase in the brain is, in part, necessary for testosterone-dependent male sexual activity. We also found that brain aromatase is required for negative feedback regulation of circulating testosterone of testicular origin. Our findings suggest testosterone activates male sexual behavior in part via conversion to estradiol in the brain. These studies provide foundational evidence that sexual behavior may be modified through inhibition or enhancement of brain aromatase enzyme activity and/or utilization of selective estrogen receptor modulators.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/metabolismo , Conducta Sexual Animal/fisiología , Animales , Aromatasa/genética , Inhibidores de la Aromatasa/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones , Caracteres Sexuales , Conducta Sexual Animal/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo
19.
Fertil Steril ; 114(6): 1339-1349, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32892998

RESUMEN

OBJECTIVE: To investigate the functional interaction between the Wnt/ß-catenin and protein kinase B (Akt) pathways in leiomyoma stem cells (LSC). DESIGN: Laboratory study. SETTING: Research laboratory. PATIENT(S): Premenopausal women (n = 36; age range: 28 to 49 years) undergoing hysterectomy or myomectomy for leiomyoma. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Gene expression, protein phosphorylation, and cell proliferation. RESULT(S): Cells from human leiomyoma tissues were sorted by fluorescence-activated cell sorting (FACS) into three populations: LSC, intermediate cells (LIC), and differentiated cells (LDC) with the function of the Wnt/ß-catenin and Akt signaling pathways in leiomyoma cells evaluated using real-time quantitative polymerase chain reaction and immunoblot analyses. The Wnt/ß-catenin signaling pathway components were differentially expressed in each leiomyoma cell population. WNT4 was distinctly overexpressed in LIC, and its receptor FZD6 was primarily expressed in LSC. WNT4 stimulated Akt phosphorylation, activated ß-catenin, and increased primary leiomyoma cell proliferation. These stimulatory effects were abolished by cotreatment with the Akt inhibitor, MK-2206. WNT4 up-regulated the expression of pro-proliferative genes, c-Myc and cyclin D1, specifically in LSC; this was also abrogated by Akt inhibition. CONCLUSION(S): Our data suggest that WNT4 regulates LSC proliferation via Akt-dependent ß-catenin activation, representing a key step toward a better understanding of LSC regulation and potentially novel therapeutic targets.


Asunto(s)
Leiomioma/enzimología , Células Madre Neoplásicas/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Uterinas/enzimología , Proteína Wnt4/metabolismo , Adulto , Proliferación Celular , Activación Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Leiomioma/genética , Leiomioma/mortalidad , Persona de Mediana Edad , Células Madre Neoplásicas/patología , Fosforilación , Esferoides Celulares , Células Tumorales Cultivadas , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Vía de Señalización Wnt , Proteína Wnt4/genética
20.
Endocrinology ; 161(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32812024

RESUMEN

Uterine leiomyoma (LM) is the most common tumor in women and can cause severe morbidity. Leiomyoma growth requires the maintenance and proliferation of a stem cell population. Dysregulated deoxyribonucleic acid (DNA) methylation has been reported in LM, but its role in LM stem cell regulation remains unclear. Here, we fluorescence-activated cell sorting (FACS)-sorted cells from human LM tissues into 3 populations: LM stem cell-like cells (LSC, 5%), LM intermediate cells (LIC, 7%), and differentiated LM cells (LDC, 88%), and we analyzed the transcriptome and epigenetic landscape of LM cells at different differentiation stages. Leiomyoma stem cell-like cells harbored a unique methylome, with 8862 differentially methylated regions compared to LIC and 9444 compared to LDC, most of which were hypermethylated. Consistent with global hypermethylation, transcript levels of TET1 and TET3 methylcytosine dioxygenases were lower in LSC. Integrative analyses revealed an inverse relationship between methylation and gene expression changes during LSC differentiation. In LSC, hypermethylation suppressed the genes important for myometrium- and LM-associated functions, including muscle contraction and hormone action, to maintain stemness. The hypomethylating drug, 5'-Aza, stimulated LSC differentiation, depleting the stem cell population and inhibiting tumor initiation. Our data suggest that DNA methylation maintains the pool of LSC, which is critical for the regeneration of LM tumors.


Asunto(s)
Azacitidina/farmacología , Diferenciación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Leiomioma/patología , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Uterinas/patología , Adulto , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Azacitidina/administración & dosificación , Recuento de Células , Células Cultivadas , Femenino , Humanos , Leiomioma/tratamiento farmacológico , Ratones , Ratones SCID , Ratones Transgénicos , Persona de Mediana Edad , Mifepristona/administración & dosificación , Mifepristona/farmacología , Terapia Molecular Dirigida , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/fisiología , Neoplasias Uterinas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA