Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794772

RESUMEN

Cancer has been recognized as one of the deadliest diseases in the world in recent years. By chemically tailoring specific properties, anticancer agents can be prepared very effectively for the treatment of various cancer types. In this manner, as anticancer agents, a series of soluble metal-free and metallophthalocyanines carrying cinnamyloxy-groups at peripheral ß-positions have been prepared. All synthesized phthalocyanines were characterized by various spectroscopic approaches such as ultraviolet - visible (UV - Vis), Fourier transform infrared (FT-IR), and matrix-assisted laser deionization/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) techniques. These compounds are highly soluble in dimethyl sulfoxide (DMSO) and soluble in common organic solvents. The spectroscopic properties, cytotoxicity, and theoretical calculations of these complexes have been investigated. In cytotoxicity tests, compounds 1, 4, and 7 are the most active against HT-29 cell lines with IC50 values of 36.9 µM, 32.5 µM, and 51.1 µM, respectively. Also, the most and the least cytotoxic compounds against healthy CCD cell line is compounds 5 and 6 with the IC50 value of 13.4 µM and >250 µM, respectively. The PDB ID:4BQG target protein representing the HT-29 cancer cell line and the anti-cancer activities of phthalonitrile and its phthalocyanines were supported by molecular docking studies. Density Functional Theory (DFT) study supported the experimental results, including the spectral data, and implied that the compounds 5-7 are comparable by their characteristics, such as electronic properties, optical properties, electrostatic potentials, reactivity parameters, with the earlier studied compounds 2-4, which were successfully proved to be good candidates for cancer treatment.Communicated by Ramaswamy H. Sarma.

2.
J Hazard Mater ; 154(1-3): 613-22, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18055111

RESUMEN

The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm.


Asunto(s)
Bentonita/química , Colorantes/química , Rojo Congo/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...