Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
medRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952781

RESUMEN

Background: The immunometabolic mechanisms underlying variable responses to oral immunotherapy (OIT) in patients with IgE-mediated food allergy are unknown. Objective: To identify novel pathways associated with tolerance in food allergy, we used metabolomic profiling to find pathways important for food allergy in multi-ethnic cohorts and responses to OIT. Methods: Untargeted plasma metabolomics data were generated from the VDAART healthy infant cohort (N=384), a Costa Rican cohort of children with asthma (N=1040), and a peanut OIT trial (N=20) evaluating sustained unresponsiveness (SU, protection that lasts after therapy) versus transient desensitization (TD, protection that ends immediately afterwards). Generalized linear regression modeling and pathway enrichment analysis identified metabolites associated with food allergy and OIT outcomes. Results: Compared with unaffected children, those with food allergy were more likely to have metabolomic profiles with altered histidines and increased bile acids. Eicosanoids (e.g., arachidonic acid derivatives) (q=2.4×10 -20 ) and linoleic acid derivatives (q=3.8×10 -5 ) pathways decreased over time on OIT. Comparing SU versus TD revealed differing concentrations of bile acids (q=4.1×10 -8 ), eicosanoids (q=7.9×10 -7 ), and histidine pathways (q=0.015). In particular, the bile acid lithocholate (4.97[1.93,16.14], p=0.0027), the eicosanoid leukotriene B4 (3.21[1.38,8.38], p=0.01), and the histidine metabolite urocanic acid (22.13[3.98,194.67], p=0.0015) were higher in SU. Conclusions: We observed distinct profiles of bile acids, histidines, and eicosanoids that vary among patients with food allergy, over time on OIT and between SU and TD. Participants with SU had higher levels of metabolites such as lithocholate and urocanic acid, which have immunomodulatory roles in key T-cell subsets, suggesting potential mechanisms of tolerance in immunotherapy. Key Messages: - Compared with unaffected controls, children with food allergy demonstrated higher levels of bile acids and distinct histidine/urocanic acid profiles, suggesting a potential role of these metabolites in food allergy. - In participants receiving oral immunotherapy for food allergy, those who were able to maintain tolerance-even after stopping therapyhad lower overall levels of bile acid and histidine metabolites, with the exception of lithocholic acid and urocanic acid, two metabolites that have roles in T cell differentiation that may increase the likelihood of remission in immunotherapy. Capsule summary: This is the first study of plasma metabolomic profiles of responses to OIT in individuals with IgE-mediated food allergy. Identification of immunomodulatory metabolites in allergic tolerance may help identify mechanisms of tolerance and guide future therapeutic development.

2.
J Allergy Clin Immunol ; 154(3): 690-697.e4, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38821318

RESUMEN

BACKGROUND: Reaction threshold and severity in food allergy are difficult to predict, and noninvasive predictors are lacking. OBJECTIVE: We sought to determine the relationships between pre-challenge levels of peanut (PN)-specific antibodies in saliva and reaction threshold, severity, and organ-specific symptoms during PN allergic reactions. METHODS: We measured PN-specific antibody levels in saliva collected from 127 children with suspected PN allergy before double-blind, placebo-controlled PN challenges in which reaction threshold, severity, and symptoms were rigorously characterized. Low threshold (LT) PN allergy was defined as reaction to <300 mg of PN protein cumulatively consumed. A consensus severity grading system was used to grade severity. We analyzed associations between antibody levels and reaction threshold, severity, and organ-specific symptoms. RESULTS: Among the 127 children, those with high pre-challenge saliva PN IgE had higher odds of LT PN allergy (odds ratio [OR] 3.9, 95% CI 1.6-9.5), while those with high saliva PN IgA:PN IgE ratio or PN IgG4:PN IgE ratio had lower odds of LT PN allergy (OR 0.3, 95% CI 0.1-0.8; OR 0.4, 95% CI 0.2-0.9). Children with high pre-challenge saliva PN IgG4 had lower odds of severe PN reactions (OR 0.4, 95% CI 0.2-0.9). Children with high saliva PN IgE had higher odds of respiratory symptoms (OR 8.0, 95% CI 2.2-26.8). Saliva PN IgE modestly correlated with serum PN IgE levels (Pearson r = 0.31, P = .0004). High and low saliva PN IgE levels further distinguished reaction threshold and severity in participants stratified by serum PN IgE, suggesting endotypes. CONCLUSIONS: Saliva PN antibodies could aid in noninvasive risk stratification of PN allergy threshold, severity, and organ-specific symptoms.


Asunto(s)
Inmunoglobulina E , Hipersensibilidad al Cacahuete , Saliva , Índice de Severidad de la Enfermedad , Humanos , Hipersensibilidad al Cacahuete/inmunología , Saliva/inmunología , Femenino , Masculino , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Niño , Preescolar , Alérgenos/inmunología , Arachis/inmunología , Inmunoglobulina A/inmunología , Método Doble Ciego , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Adolescente
3.
Allergy ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796780

RESUMEN

BACKGROUND: Allergic rhinitis is a common inflammatory condition of the nasal mucosa that imposes a considerable health burden. Air pollution has been observed to increase the risk of developing allergic rhinitis. We addressed the hypotheses that early life exposure to air toxics is associated with developing allergic rhinitis, and that these effects are mediated by DNA methylation and gene expression in the nasal mucosa. METHODS: In a case-control cohort of 505 participants, we geocoded participants' early life exposure to air toxics using data from the US Environmental Protection Agency, assessed physician diagnosis of allergic rhinitis by questionnaire, and collected nasal brushings for whole-genome DNA methylation and transcriptome profiling. We then performed a series of analyses including differential expression, Mendelian randomization, and causal mediation analyses to characterize relationships between early life air toxics, nasal DNA methylation, nasal gene expression, and allergic rhinitis. RESULTS: Among the 505 participants, 275 had allergic rhinitis. The mean age of the participants was 16.4 years (standard deviation = 9.5 years). Early life exposure to air toxics such as acrylic acid, phosphine, antimony compounds, and benzyl chloride was associated with developing allergic rhinitis. These air toxics exerted their effects by altering the nasal DNA methylation and nasal gene expression levels of genes involved in respiratory ciliary function, mast cell activation, pro-inflammatory TGF-ß1 signaling, and the regulation of myeloid immune cell function. CONCLUSIONS: Our results expand the range of air pollutants implicated in allergic rhinitis and shed light on their underlying biological mechanisms in nasal mucosa.

4.
J Allergy Clin Immunol ; 153(6): 1721-1728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38272374

RESUMEN

BACKGROUND: Reaction thresholds in peanut allergy are highly variable. Elucidating causal relationships between molecular and cellular processes associated with variable thresholds could point to therapeutic pathways for raising thresholds. OBJECTIVE: The aim of this study was to characterize molecular and cellular systemic processes associated with reaction threshold in peanut allergy and causal relationships between them. METHODS: A total of 105 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. The cumulative peanut protein quantity eliciting allergic symptoms was considered the reaction threshold for each child. Peripheral blood samples collected at 0, 2, and 4 hours after challenge start were used for RNA sequencing, whole blood staining, and cytometry. Statistical and network analyses were performed to identify associations and causal mediation between the molecular and cellular profiles and peanut reaction threshold. RESULTS: Within the cohort (N = 105), 81 children (77%) experienced allergic reactions after ingesting varying quantities of peanut, ranging from 43 to 9043 mg of cumulative peanut protein. Peripheral blood expression of transcripts (eg, IGF1R [false discovery rate (FDR) = 5.4e-5] and PADI4 [FDR = 5.4e-5]) and neutrophil abundance (FDR = 9.5e-4) were associated with peanut threshold. Coexpression network analyses revealed that the threshold-associated transcripts were enriched in modules for FcγR-mediated phagocytosis (FDR = 3.2e-3) and Toll-like receptor (FDR = 1.4e-3) signaling. Bayesian network, key driver, and causal mediation analyses identified key drivers (AP5B1, KLHL21, VASP, TPD52L2, and IGF2R) within these modules that are involved in bidirectional causal mediation relationships with neutrophil abundance. CONCLUSION: Key driver transcripts in FcγR-mediated phagocytosis and Toll-like receptor signaling interact bidirectionally with neutrophils in peripheral blood and are associated with reaction threshold in peanut allergy.


Asunto(s)
Hipersensibilidad al Cacahuete , Humanos , Hipersensibilidad al Cacahuete/inmunología , Niño , Preescolar , Masculino , Femenino , Adolescente , Transcriptoma , Arachis/inmunología , Alérgenos/inmunología , Método Doble Ciego , Citometría de Flujo
5.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295882

RESUMEN

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Asunto(s)
Asma , Hipersensibilidad , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Hipersensibilidad/genética , Asma/etiología , Genómica , Proteómica , Metabolómica
6.
Pediatr Allergy Immunol ; 35(1): e14065, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284919

RESUMEN

As a potential link between genetic predisposition, environmental exposures, and food allergy outcomes, epigenetics has been a molecular variable of interest in ongoing efforts to understand food allergy mechanisms and outcomes. Here we review population-based investigations of epigenetic loci associated with food allergy, focusing on established clinical food allergy. We first provide an overview of epigenetic mechanisms that have been studied in cohorts with food allergy, predominantly DNA methylation but also microRNA. We then discuss investigations that have implemented epigenome-wide approaches aimed at genome-wide profiling and discovery. Such epigenome-wide studies have collectively identified differentially methylated and differentially regulated loci associated with T cell development, antigen presentation, reaction severity, and causal mediation in food allergy. We then discuss candidate-gene investigations that have honed in on Th1, Th2, T regulatory, and innate genes of a priori interest in food allergy. These studies have highlighted methylation changes in specific candidate genes as associated with T regulatory cell activity as well as differential methylation of Type 1 and Type 2 cytokine genes associated with various food allergies. Intriguingly, epigenetic loci associated with food allergy have also been explored as potential biomarkers for the clinical management of food allergy. We conclude by highlighting several priority directions for advancing population-based epigenomic and epigenetic understandings of food allergy.


Asunto(s)
Hipersensibilidad a los Alimentos , MicroARNs , Humanos , Epigenómica , Hipersensibilidad a los Alimentos/genética , Diferenciación Celular , Epigénesis Genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-37771674

RESUMEN

Background: Food allergy (FA) and atopic dermatitis (AD) are common conditions that often present in the first year of life. Identification of underlying mechanisms and environmental determinants of FA and AD is essential to develop and implement effective prevention and treatment strategies. Objectives: We sought to describe the design of the Systems Biology of Early Atopy (SunBEAm) birth cohort. Methods: Funded by the National Institute of Allergy and Infectious Diseases (NIAID) and administered through the Consortium for Food Allergy Research (CoFAR), SunBEAm is a US population-based, multicenter birth cohort that enrolls pregnant mothers, fathers, and their newborns and follows them to 3 years. Questionnaire and biosampling strategies were developed to apply a systems biology approach to identify environmental, immunologic, and multiomic determinants of AD, FA, and other allergic outcomes. Results: Enrollment is currently underway. On the basis of an estimated FA prevalence of 6%, the enrollment goal is 2500 infants. AD is defined on the basis of questionnaire and assessment, and FA is defined by an algorithm combining history and testing. Although any FA will be recorded, we focus on the diagnosis of egg, milk, and peanut at 5 months, adding wheat, soy, cashew, hazelnut, walnut, codfish, shrimp, and sesame starting at 12 months. Sampling includes blood, hair, stool, dust, water, tape strips, skin swabs, nasal secretions, nasal swabs, saliva, urine, functional aspects of the skin, and maternal breast milk and vaginal swabs. Conclusions: The SunBEAm birth cohort will provide a rich repository of data and specimens to interrogate mechanisms and determinants of early allergic outcomes, with an emphasis on FA, AD, and systems biology.

8.
J Allergy Clin Immunol ; 152(5): 1060-1072, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741554

RESUMEN

Human epigenetic variation is associated with both environmental exposures and allergic diseases and can potentially serve as a biomarker connecting climate change with allergy and airway diseases. In this narrative review, we summarize recent human epigenetic studies examining exposure to temperature, precipitation, extreme weather events, and malnutrition to discuss findings as they relate to allergic and airway diseases. Temperature has been the most widely studied exposure, with the studies implicating both short-term and long-term exposures with epigenetic alterations and epigenetic aging. Few studies have examined natural disasters or extreme weather events. The studies available have reported differential DNA methylation of multiple genes and pathways, some of which were previously associated with asthma or allergy. Few studies have integrated climate-related events, epigenetic biomarkers, and allergic disease together. Prospective longitudinal studies are needed along with the collection of target tissues beyond blood samples, such as nasal and skin cells. Finally, global collaboration to increase diverse representation of study participants, particularly those most affected by climate injustice, as well as strengthen replication, validation, and harmonization of measurements will be needed to elucidate the impacts of climate change on the human epigenome.


Asunto(s)
Hipersensibilidad , Trastornos Respiratorios , Humanos , Cambio Climático , Estudios Prospectivos , Hipersensibilidad/genética , Biomarcadores , Metilación de ADN , Epigénesis Genética
9.
Genome Med ; 15(1): 71, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730635

RESUMEN

BACKGROUND: Systemic and local profiles have each been associated with asthma, but parsing causal relationships between system-wide and airway-specific processes can be challenging. We sought to investigate systemic and airway processes in asthma and their causal relationships. METHODS: Three hundred forty-one participants with persistent asthma and non-asthmatic controls were recruited and underwent peripheral blood mononuclear cell (PBMC) collection and nasal brushing. Transcriptome-wide RNA sequencing of the PBMC and nasal samples and a series of analyses were then performed using a discovery and independent test set approach at each step to ensure rigor. Analytic steps included differential expression analyses, coexpression and probabilistic causal (Bayesian) network constructions, key driver analyses, and causal mediation models. RESULTS: Among the 341 participants, the median age was 13 years (IQR = 10-16), 164 (48%) were female, and 200 (58.7%) had persistent asthma with mean Asthma Control Test (ACT) score 16.6 (SD = 4.2). PBMC genes associated with asthma were enriched in co-expression modules for NK cell-mediated cytotoxicity (fold enrichment = 4.5, FDR = 6.47 × 10-32) and interleukin production (fold enrichment = 2.0, FDR = 1.01 × 10-15). Probabilistic causal network and key driver analyses identified NK cell granule protein (NKG7, fold change = 22.7, FDR = 1.02 × 10-31) and perforin (PRF1, fold change = 14.9, FDR = 1.31 × 10-22) as key drivers predicted to causally regulate PBMC asthma modules. Nasal genes associated with asthma were enriched in the tricarboxylic acid (TCA) cycle module (fold enrichment = 7.5 FDR = 5.09 × 10-107), with network analyses identifying G3BP stress granule assembly factor 1 (G3BP1, fold change = 9.1 FDR = 2.77 × 10-5) and InaD-like protein (INADL, fold change = 5.3 FDR = 2.98 × 10-9) as nasal key drivers. Causal mediation analyses revealed that associations between PBMC key drivers and asthma are causally mediated by nasal key drivers (FDR = 0.0076 to 0.015). CONCLUSIONS: Integrated study of the systemic and airway transcriptomes in a well-phenotyped asthma cohort identified causal key drivers of asthma among PBMC and nasal transcripts. Associations between PBMC key drivers and asthma are causally mediated by nasal key drivers.


Asunto(s)
Asma , Leucocitos Mononucleares , Femenino , Humanos , Adolescente , Masculino , Transcriptoma , Teorema de Bayes , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Asma/genética
10.
J Allergy Clin Immunol ; 152(6): 1569-1580, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37619819

RESUMEN

BACKGROUND: Rising rates of peanut allergy (PA) motivate investigations of its development to inform prevention and therapy. Microbiota and the metabolites they produce shape food allergy risk. OBJECTIVE: We sought to gain insight into gut microbiome and metabolome dynamics in the development of PA. METHODS: We performed a longitudinal, integrative study of the gut microbiome and metabolome of infants with allergy risk factors but no PA from a multicenter cohort followed through mid-childhood. We performed 16S rRNA sequencing, short chain fatty acid measurements, and global metabolome profiling of fecal samples at infancy and at mid-childhood. RESULTS: In this longitudinal, multicenter sample (n = 122), 28.7% of infants developed PA by mid-childhood (mean age 9 years). Lower infant gut microbiome diversity was associated with PA development (P = .014). Temporal changes in the relative abundance of specific microbiota and gut metabolite levels significantly differed in children who developed PA. PA-bound children had different abundance trajectories of Clostridium sensu stricto 1 sp (false discovery rate (FDR) = 0.015) and Bifidobacterium sp (FDR = 0.033), with butyrate (FDR = 0.045) and isovalerate (FDR = 0.036) decreasing over time. Metabolites associated with PA development clustered within the histidine metabolism pathway. Positive correlations between microbiota, butyrate, and isovalerate and negative correlations with histamine marked the PA-free network. CONCLUSION: The temporal dynamics of the gut microbiome and metabolome in early childhood are distinct for children who develop PA. These findings inform our thinking on the mechanisms underlying and strategies for potentially preventing PA.


Asunto(s)
Microbioma Gastrointestinal , Hipersensibilidad al Cacahuete , Niño , Preescolar , Humanos , Lactante , Butiratos , Heces/microbiología , Microbioma Gastrointestinal/genética , Metaboloma , ARN Ribosómico 16S/genética , Estudios Longitudinales
11.
J Allergy Clin Immunol ; 152(6): 1417-1419, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37558058
13.
Clin Exp Allergy ; 53(5): 536-549, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36756745

RESUMEN

INTRODUCTION: Food allergic reactions can be severe and potentially life-threatening and the underlying immunological processes that contribute to the severity of reactions are poorly understood. The aim of this study is to integrate bulk RNA-sequencing of human and mouse peripheral blood mononuclear cells during food allergic reactions and in vivo mouse models of food allergy to identify dysregulated immunological processes associated with severe food allergic reactions. METHODS: Bulk transcriptomics of whole blood from human and mouse following food allergic reactions combined with integrative differential expressed gene bivariate and module eigengene network analyses to identify the whole blood transcriptome associated with food allergy severity. In vivo validation immune cell and gene expression in mice following IgE-mediated reaction. RESULTS: Bulk transcriptomics of whole blood from mice with different severity of food allergy identified gene ontology (GO) biological processes associated with innate and inflammatory immune responses, dysregulation of MAPK and NFkB signalling and identified 429 genes that correlated with reaction severity. Utilizing two independent human cohorts, we identified 335 genes that correlated with severity of peanut-induced food allergic reactions. Mapping mouse food allergy severity transcriptome onto the human transcriptome revealed 11 genes significantly dysregulated and correlated with severity. Analyses of whole blood from mice undergoing an IgE-mediated reaction revealed a rapid change in blood leukocytes particularly inflammatory monocytes (Ly6Chi Ly6G- ) and neutrophils that was associated with changes in CLEC4E, CD218A and GPR27 surface expression. CONCLUSIONS: Collectively, IgE-mediated food allergy severity is associated with a rapid innate inflammatory response associated with acute cellular stress processes and dysregulation of peripheral blood inflammatory myeloid cell frequencies.


Asunto(s)
Fenómenos Biológicos , Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Humanos , Animales , Ratones , Leucocitos Mononucleares , Hipersensibilidad a los Alimentos/genética , Alérgenos , Inmunoglobulina E , Receptores Acoplados a Proteínas G
14.
Allergy ; 78(2): 512-521, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36448508

RESUMEN

BACKGROUND: Intestinal microenvironmental perturbations may increase food allergy risk. We hypothesize that children with clinical food allergy, those with food sensitization, and healthy children can be differentiated by intestinal metabolites in the first years of life. METHODS: In this ancillary analysis of the Vitamin D Antenatal Asthma Reduction Trial (VDAART), we performed untargeted metabolomic profiling in 824 stool samples collected at ages 3-6 months, 1 year and 3 years. Subjects included 23 with clinical food allergy at age 3 and/or 6 years, 151 with food sensitization but no clinical food allergy, and 220 controls. We identified modules of correlated, functionally related metabolites and sought associations of metabolite modules and individual metabolites with food allergy/sensitization using regression models. RESULTS: Several modules of functionally related intestinal metabolites were reduced among subjects with food allergy, including bile acids at ages 3-6 months and 1 year, amino acids at age 3-6 months, steroid hormones at 1 year, and sphingolipids at age 3 years. One module primarily containing diacylglycerols was increased in those with food allergy at age 3-6 months. Fecal caffeine metabolites at age 3-6 months, likely derived from breast milk, were increased in those with food allergy and/or sensitization (beta = 5.9, 95% CI 1.0-10.8, p = .02) and were inversely correlated with fecal bile acids and bilirubin metabolites, though maternal plasma caffeine levels were not associated with food allergy and/or sensitization. CONCLUSIONS: Several classes of bioactive fecal metabolites are associated with food allergy and/or sensitization including bile acids, steroid hormones, sphingolipids, and caffeine metabolites.


Asunto(s)
Cafeína , Hipersensibilidad a los Alimentos , Niño , Humanos , Femenino , Embarazo , Preescolar , Lactante , Hipersensibilidad a los Alimentos/diagnóstico , Metabolómica , Alérgenos , Leche Humana , Esfingolípidos
15.
Lancet Child Adolesc Health ; 6(11): 810-819, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35985346

RESUMEN

Allergic diseases affect millions of children and adolescents worldwide. In this Review, we focus on allergies to food and airborne allergens and provide examples of prevalence trends during a time when climate change is of increasing concern. Profound environmental changes have affected natural systems in terms of biodiversity loss, air pollution, and climate. We discuss the potential links between these changes and allergic diseases in children, and the clinical implications. Several exposures of relevance for allergic disease also correlate with epigenetic changes such as DNA methylation. We propose that epigenetics could be a promising tool by which exposures and hazards related to a changing environment can be captured. Epigenetics might also provide promising biomarkers and help to elucidate the mechanisms related to allergic disease initiation and progress.


Asunto(s)
Contaminación del Aire , Hipersensibilidad , Adolescente , Contaminación del Aire/efectos adversos , Alérgenos , Niño , Cambio Climático , Epigénesis Genética , Humanos
16.
J Allergy Clin Immunol Pract ; 10(9): 2206-2217.e1, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750322

RESUMEN

The environmental microbiome represents the entirety of the microbes and their metabolites that we encounter in our environments. A growing body of evidence supports the role of the environmental microbiome in risk for and severity of allergic diseases and asthma. The environmental microbiome represents a ubiquitous, lifelong exposure to non-self antigens. During the critical window between birth and 1 year of life, interactions between our early immune system and the environmental microbiome have 2 consequences: our individual microbiome is populated by environmental microbes, and our immune system is trained regarding which antigens to tolerate. During this time, a diversity of exposures appears largely protective, dramatically decreasing the risk of developing allergic diseases and asthma. As we grow older, our interactions with the environmental microbiome change. While it continues to exert influence over the composition of the human microbiome, the environmental microbiome becomes increasingly a source for antigenic stimulation and infection. The same microbial exposure protective against disease development may exacerbate disease severity. Although much has been learned about the importance of the environmental microbiome in allergic disease, much more remains to be understood about these complicated interactions between our environment, our microbiome, our immune system, and disease.


Asunto(s)
Asma , Hipersensibilidad , Microbiota , Asma/complicaciones , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Hipersensibilidad/epidemiología , Hipersensibilidad/etiología
17.
J Allergy Clin Immunol ; 150(5): 1232-1236, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35718139

RESUMEN

BACKGROUND: Genetic predisposition increases risk for asthma, and distinct nasal microbial compositions are associated with asthma. Host genetics might shape nasal microbiome composition. OBJECTIVE: We examined associations between host genetics and nasal microbiome composition. METHODS: Nasal samples were collected from 584 participants from the Mount Sinai Health System, New York. Seventy-seven follow-up samples were collected from a subset of 40 participants. 16S rRNA sequencing and RNA sequencing were performed on nasal samples. Beta diversity was calculated, variant calling on RNA sequencing data was performed, and genetic relatedness between individuals was determined. Using linear regression models, we tested for associations between genetic relatedness and nasal microbiome composition. RESULTS: The median age of the cohort was 14.6 (interquartile range 11.2-19.5) years, with participants representing diverse ancestries and 52.7% of the cohort being female. For participants who provided follow-up samples, the median time between samples was 5.1 (interquartile range 1.4-7.2) months. Nasal microbiome composition similarity as reflected by beta diversity was significantly higher within subjects over time versus between subjects (coefficient = 0.091, P = 2.84-7). There was no significant association between genetic relatedness and beta diversity (coefficient = -0.05, P = .29). Additional analyses exploring the relationship between beta diversity and genetic variance yielded similar results. CONCLUSION: Host genetics has little influence on nasal microbiome composition.


Asunto(s)
Asma , Microbiota , Humanos , Femenino , Niño , Adolescente , Adulto Joven , Adulto , Masculino , ARN Ribosómico 16S/genética , Microbiota/genética , Nariz , Estudios de Cohortes
18.
J Allergy Clin Immunol ; 150(3): 714-720.e2, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35550149

RESUMEN

BACKGROUND: The oral and gut microbiomes have each been associated with food allergy status. Within food allergy, they may also influence reaction thresholds. OBJECTIVE: Our aim was to identify oral and gut microbiota associated with reaction thresholds in peanut allergy. METHODS: A total of 59 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. Those children who reacted at the 300-mg or higher dose of peanut were classified as high-threshold (HT), those who reacted to lower doses were classified as low-threshold (LT), and those children who did not react were classified as not peanut allergic (NPA). Saliva and stool samples collected before challenge underwent DNA isolation followed by 16S rRNA sequencing and short-chain fatty acid measurement. RESULTS: The 59 participants included 38 HT children and 13 LT children. Saliva microbiome α-diversity (Shannon index) was higher in LT children (P = .017). We identified saliva and stool microbiota that distinguished HT children from LT children, including oral Veillonella nakazawae (amplicon sequence variant 1979), which was more abundant in the HT group than in the LT group (false discovery rate [FDR] = 0.025), and gut Bacteroides thetaiotaomicron (amplicon sequence variant 6829), which was less abundant in HT children than in LT children (FDR = 0.039). Comparison with NPA children revealed consistent ordinal trends between these discriminating species and reaction thresholds. Importantly, many of these threshold-associated species were also correlated with short-chain fatty acid levels at the respective body sites, including between oral V nakazawae and oral butyrate (r = 0.57; FDR = 0.049). CONCLUSION: Findings from this multiscale study raise the possibility of microbial therapeutics to increase reaction thresholds in children with food allergy.


Asunto(s)
Hipersensibilidad al Cacahuete , Adolescente , Alérgenos , Arachis , Niño , Preescolar , Método Doble Ciego , Humanos , Hipersensibilidad al Cacahuete/terapia , ARN Ribosómico 16S/genética
19.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34609967

RESUMEN

Air pollution is a well-known contributor to asthma. Air toxics are hazardous air pollutants that cause or may cause serious health effects. Although individual air toxics have been associated with asthma, only a limited number of studies have specifically examined combinations of air toxics associated with the disease. We geocoded air toxic levels from the US National Air Toxics Assessment (NATA) to residential locations for participants of our AiRway in Asthma (ARIA) study. We then applied Data-driven ExposurE Profile extraction (DEEP), a machine learning-based method, to discover combinations of early-life air toxics associated with current use of daily asthma controller medication, lifetime emergency department visit for asthma, and lifetime overnight hospitalization for asthma. We discovered 20 multi-air toxic combinations and 18 single air toxics associated with at least 1 outcome. The multi-air toxic combinations included those containing acrylic acid, ethylidene dichloride, and hydroquinone, and they were significantly associated with asthma outcomes. Several air toxic members of the combinations would not have been identified by single air toxic analyses, supporting the use of machine learning-based methods designed to detect combinatorial effects. Our findings provide knowledge about air toxic combinations associated with childhood asthma.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Asma/etiología , Aprendizaje Automático , Acrilatos/efectos adversos , Adolescente , Contaminantes Atmosféricos/análisis , Niño , Cloruro de Etilo/efectos adversos , Femenino , Humanos , Hidroquinonas/efectos adversos , Masculino , Factores de Riesgo
20.
Curr Opin Pediatr ; 33(6): 639-647, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34412069

RESUMEN

PURPOSE OF REVIEW: Asthma is the most common chronic disease of childhood. Investigations of the lower and upper airway microbiomes have significantly progressed over recent years, and their roles in pediatric asthma are becoming increasingly clear. RECENT FINDINGS: Early studies identified the existence of upper and lower airway microbiomes, including imbalances in both associated with pediatric asthma. The infant airway microbiome may offer predictive value for the development of asthma in later childhood, and it may also be influenced by external factors such as respiratory viral illness. The airway microbiome has also been associated with the clinical course of asthma, including rates of exacerbation and level of control. Advances in -omics sciences have enabled improved identification of the airway microbiome's relationships with host response and function in children with asthma. Investigations are now moving toward the application of the above findings to explore risk modification and treatment options. SUMMARY: The airway microbiome provides an intriguing window into pediatric asthma, offering insights into asthma diagnosis, clinical course, and perhaps treatment. Further investigation is needed to solidify these associations and translate research findings into clinical practice.


Asunto(s)
Asma , Microbiota , Asma/diagnóstico , Asma/terapia , Niño , Humanos , Lactante , Sistema Respiratorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...