Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047617

RESUMEN

Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer's Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, ß-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCßII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Factor A de Crecimiento Endotelial Vascular , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36797609

RESUMEN

AIMS: Investigate the immunomodulatory effects of bisphenols in the THP-1 cell line and peripheral blood mononuclear cells in response to lipopolysaccharide (LPS) activation or to phorbol 12-myristate 13-acetate (PMA) and ionomycin. BACKGROUND: We have previously demonstrated the usefulness of the evaluation of RACK1 expression as a link between endocrine disrupting activity and the immunotoxic effect of xenobiotics. We demonstrated that while BPA and BPAF reduced RACK1 expression, BPS was able to increase it. OBJECTIVE: Bisphenol A (BPA) is one of the most commonly used chemicals in the manufacturing of polycarbonate plastics and plastic consumer products. Its endocrine disrupting (ED) potential and changes in European regulations have led to replacing BPA in many uses with structurally similar chemicals, like bisphenol AF (BPAF) and bisphenol S (BPS). However, emerging data indicated that bisphenol analogues may not be safer than BPA both in toxic effects and ED potential. METHODS: THP-1 cell line and peripheral blood mononuclear cells were activated with lipopolysaccharide (LPS) or with phorbol 12-myristate 13-acetate (PMA) and ionomycin. RESULTS: BPA and BPAF decreased LPS-induced expression of surface markers and the release of pro-inflammatory cytokines, while BPS increased LPS-induced expression of CD86 and cytokines. BPA, BPAF, and BPS affected PMA/ionomycin-induced T helper differentiation and cytokine release with gender-related alterations in some parameters investigated. CONCLUSION: Data confirm that bisphenols can modulate immune cell differentiation and activation, further supporting their immunotoxic effects.

3.
Toxicology ; 480: 153321, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113621

RESUMEN

The existence of a complex hormonal balance among glucocorticoids, androgens and estrogens involved in the regulation of Receptor for Activated C Kinase 1 (RACK1) expression and its related immune cells activation, highlights the possibility to employ this protein as screening tool for the evaluation of the immunotoxic profile of endocrine disrupting chemicals (EDCs), hormone-active substances capable of interfering with the physiologic hormonal signaling. Hence, the aim of this work was to investigate the effect of the exposure of EDCS 17α-ethynylestradiol (EE), diethyl phthalate (DEP) and perfluorooctanesulfonic acid (PFOS) on RACK1 expression and on lipopolysaccharide (LPS)-induced activation of the human monocytic cell line THP-1, a validated model for this investigation. In line with our previous results with estrogen-active compounds, EE treatment significantly induced RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which paralleled an increase in LPS-induced IL-8, TNF-α production and CD86 expression, previously demonstrated to be dependent on RACK1/PKCß activation. EE mediates its effect on RACK1 expression through G-protein-coupled estrogen receptor (GPER) and androgen receptor (AR) ligand-independent cascade, as also suggested by in silico molecular docking simulation. Conversely, DEP and PFOS induced a dose-dependent downregulation of RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which was mirrored by a reduction of IL-8, TNF-α production and CD86 expression. Mifepristone pre-treatments abolish DEP and PFOS effects, confirming their GR agonist profile, also corroborated by molecular docking. Altogether, our data confirm that RACK1 represents an interesting target of steroid active compounds, which expression offers the opportunity to screen the immunotoxic potential of different hormone-active substances of concerns due to their human exposure and environmental persistence.


Asunto(s)
Disruptores Endocrinos , Ácidos Alcanesulfónicos , Andrógenos , Disruptores Endocrinos/toxicidad , Estrógenos , Fluorocarburos , Proteínas de Unión al GTP/metabolismo , Glucocorticoides , Humanos , Interleucina-8 , Ligandos , Lipopolisacáridos/toxicidad , Mifepristona , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias , ARN Mensajero/metabolismo , Receptores de Cinasa C Activada/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
4.
Environ Toxicol Pharmacol ; 95: 103971, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36084878

RESUMEN

We have previously demonstrated that RACK1, which expression is under steroid hormone control, plays an important role in the activation of immune cells and its expression can be useful to evaluate the immunotoxic profile of endocrine disrupting chemicals (EDCs). Hence, we investigated the effects of three contaminating and persistent pesticides: the fungicide vinclozolin (VIN), the herbicide atrazine (ATR) and the insecticide cypermethrin (CYP) on RACK1 expression and on innate immune response. VIN resulted in modest alteration of RACK1 while ATR and CYP reduced in a dose dependent manner RACK1 expression, ultimately leading to the decrease in lipopolysaccharide-induced IL-8 and TNF-α release and CD86 and CD54 surface marker expression. Moreover, our data indicate that, after exposure to EDCs, alterations of RACK1 expression can also occur with mechanisms not directly mediated by an interaction with a nuclear or membrane steroid receptors. Therefore, RACK1 could represent a useful EDCs screening tool to evaluate their immunotoxic potential and to dissect their mechanisms of action.


Asunto(s)
Atrazina , Disruptores Endocrinos , Fungicidas Industriales , Herbicidas , Insecticidas , Plaguicidas , Atrazina/toxicidad , Disruptores Endocrinos/toxicidad , Hormonas , Humanos , Interleucina-8/metabolismo , Lipopolisacáridos , Proteínas de Neoplasias , Plaguicidas/toxicidad , Receptores de Cinasa C Activada , Células THP-1 , Factor de Necrosis Tumoral alfa
5.
Cells ; 11(16)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36010666

RESUMEN

The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC-all ribosome-related processes required for proteostasis regulation-can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer's disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.


Asunto(s)
Demencia Frontotemporal , Proteínas Ribosómicas , Gránulos Citoplasmáticos/metabolismo , Demencia Frontotemporal/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Proteostasis , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/metabolismo , Gránulos de Estrés
6.
Cells ; 11(13)2022 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-35805113

RESUMEN

Due to the increase in life expectancy, the aging population around the globe has been growing significantly and is estimated to triple by 2050 [...].


Asunto(s)
Senescencia Celular
8.
Br J Pharmacol ; 179(12): 2813-2828, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-32726469

RESUMEN

Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer. LINKED ARTICLES: This article is part of a themed issue on New avenues in cancer prevention and treatment (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.12/issuetoc.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores de Cinasa C Activada/química , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo
9.
Cells ; 10(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34831222

RESUMEN

Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones' activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.


Asunto(s)
Membrana Celular/metabolismo , Hormonas/metabolismo , Neoplasias/metabolismo , Receptores de Esteroides/genética , Animales , Humanos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Receptores de Esteroides/metabolismo , Transducción de Señal
10.
Front Pharmacol ; 12: 743991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621174

RESUMEN

Receptor for activated C kinase 1 (RACK1) has an important role in immune activation, and is regulated through a balance between glucocorticoid and androgen levels. We have previously demonstrated that RACK1 expression can serve as a marker for evaluation of immunotoxic profiles of hormone-active substances, such as endocrine-disrupting chemicals (EDCs). In this study, we investigated the effects of three bisphenols (BPA, BPAF, BPS) on RACK1 expression and on the innate immune responses in the THP-1 human promyelocytic cell line, a validated model for this investigation. BPA and BPAF reduced RACK1 promoter transcriptional activity, mRNA expression, and protein levels. However, BPS had the opposite effect. As expected, these results on RACK1 were paralleled by lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) and tumor necrosis factor-α (TNFα) production. Since BPA and BPAF induced RACK1 expression in the presence of glucocorticoid receptor (GR) antagonist mifepristone, a role of G-protein-coupled estrogen receptor (GPER) has been considered due to their known estrogenic profile. Therefore, additional molecular effects of BPA and BPAF were unmasked after treatment with different inhibitors of well-known pivotal players of GPER-mediated signaling. BPA exerted its effects on RACK1 via NF-κB, as shown using the NF-κB inhibitor BAY11-7085 and NF-κB-specific luciferase reporter assay. Conversely, BPAF induced RACK1 up-regulation via androgen receptor (AR) activation, as confirmed by treatment with AR antagonist flutamide. Indeed, a biased agonism profile for BPA and BPAF for GPER was suggested based on their different binding modes revealed by our molecular docking. Altogether, our data suggest that RACK1 could represent an important target of EDCs and serves as a screening tool for their immunotoxic potential. Furthermore, RACK1 can be exploited to unmask multiple molecular interactions of hormone-active substances to better dissect out their mechanisms of action.

11.
Neurobiol Stress ; 15: 100372, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34401408

RESUMEN

Several intracellular pathways that contribute to the adaptation or maladaptation to environmental challenges mediate the vulnerability and resilience to chronic stress. The activity of the hypothalamic-pituitary-adrenal (HPA) axis is fundamental for the proper maintenance of brain processes, and it is related to the functionality of the isoform alfa and beta of the glucocorticoid receptor (Gr), the primary regulator of HPA axis. Among the downstream effectors of the axis, the scaffolding protein RACK1 covers an important role in regulating synaptic activity and mediates the transcription of the neurotrophin Bdnf. Hence, by employing the chronic mild stress (CMS) paradigm, we studied the role of the Grß-RACK1-Bdnf signaling in the different susceptibility to chronic stress exposure. We found that resilience to two weeks of CMS is paralleled by the activation of this pathway in the ventral hippocampus, the hippocampal subregion involved in the modulation of stress response. Moreover, the results we obtained in vitro by exposing SH-SY5Y cells to cortisol support the data we found in vivo. The results obtained add novel critical information about the link among Gr, RACK1 and Bdnf and the resilience to chronic stress, suggesting novel targets for the treatment of stress-related disorders, including depression.

12.
Adv Exp Med Biol ; 1275: 151-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539015

RESUMEN

Protein kinase C (PKCs) isoforms play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion, etc. Patterns of expression for each PKC isoform differ among tissues, and it is also clear that different PKCs are often not functionally redundant, for example specific PKCs mediate specific cellular signals required for activation, proliferation, differentiation and survival of immune cells. In the last 20 years, we have been studying the role of PKCs, mainly PKCß and its anchoring protein RACK1 (Receptor for Activated C Kinase 1), in immune cell activation, and their implication in immunosenescence and immunotoxicity. We could demonstrate that PKCß and RACK1 are central in dendritic cell maturation and activation by chemical allergens, and their expressions can be targeted by EDCs and anti-inflammatory drugs. In this chapter, current knowledge on the role of PKC in immune cell activation and possible implication in immunotoxicity will be described.


Asunto(s)
Presentación de Antígeno , Transducción de Señal , Isoformas de Proteínas , Proteína Quinasa C beta/metabolismo
13.
Front Toxicol ; 3: 649024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295136

RESUMEN

Endocrine disruptors (ED) are natural and anthropogenic chemicals that can interfere with hormonal systems at different levels. As such, ED-induced alterations in hormone functions have been implicated in many diseases and pathological conditions, including adverse developmental, reproductive, neurological, cardiovascular, and immunological effects in mammals. The fact that ED may compete with several endogenous hormones for multiple receptors and pathways is not always fully considered. This results in a complex response that depends on the cellular context in terms of receptors and interacting proteins and, thus, may differ between tissues and circumstances. Microglia, neurons, and other immune cells are potential targets and still underappreciated actors in endocrine disruption. Due to the large scale of this topic, this review is not intended to provide a comprehensive review nor a systematic review of chemicals identified as endocrine disruptors. It focuses on the immune-neuro-endocrine network in ED toxicity and research gaps, using atrazine as an example to highlight this complexity and the interrelationship between the immune, endocrine, and nervous systems, and ED.

14.
Oncogenesis ; 9(12): 105, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311444

RESUMEN

Recent data indicate that receptor for activated C kinase 1 (RACK1) is a putative prognostic marker and drug target in breast cancer (BC). High RACK1 expression is negatively associated with overall survival, as it seems to promote BC progression. In tumors, RACK1 expression is controlled by a complex balance between glucocorticoids and androgens. Given the fact that androgens and androgenic derivatives can inhibit BC cell proliferation and migration, the role of androgen signaling in regulating RACK1 transcription in mammary tumors is of pivotal interest. Here, we provide evidence that nandrolone (19-nortosterone) inhibits BC cell proliferation and migration by antagonizing the PI3K/Akt/NF-κB signaling pathway, which eventually results in RACK1 downregulation. We also show that nandrolone impairs the PI3K/Akt/NF-κB signaling pathway and decreases RACK1 expression via binding to the membrane-bound receptor, oxoeicosanoid receptor 1 (OXER1). High levels of OXER1 are observed in several BC cell lines and correlate with RACK1 expression and poor prognosis. Our data provide evidence on the role played by the OXER1-dependent intracellular pathway in BC progression and shed light on the mechanisms underlying membrane-dependent androgen effects on RACK1 regulation. Besides the mechanistic relevance, the results of the study are of interest from a translational prospective. In fact, they identify a new and actionable pathway to be used for the design of innovative and rational therapeutic strategies in the context of the personalized treatment of BC. In addition, they draw attention on nandrolone-based compounds that lack hormonal activity as potential anti-tumor agents.

15.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287384

RESUMEN

Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.


Asunto(s)
Disruptores Endocrinos/farmacología , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptores de Cinasa C Activada/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Disruptores Endocrinos/efectos adversos , Sistema Endocrino/efectos de los fármacos , Sistema Endocrino/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Sistema Inmunológico , Proteínas de Neoplasias/genética , Neoplasias/etiología , Unión Proteica , Receptores de Cinasa C Activada/genética , Riesgo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología
16.
Biology (Basel) ; 9(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271839

RESUMEN

The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.

17.
Front Pharmacol ; 11: 1256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922294

RESUMEN

The transcription factor Nrf2 coordinates a multifaceted response to various forms of stress and to inflammatory processes, maintaining a homeostatic intracellular environment. Nrf2 anti-inflammatory activity has been related to the crosstalk with the transcription factor NF-κB, a pivotal mediator of inflammatory responses and of multiple aspects of innate and adaptative immune functions. However, the underlying molecular basis has not been completely clarified. By combining into new chemical entities, the hydroxycinnamoyl motif from curcumin and the allyl mercaptan moiety of garlic organosulfur compounds, we tested a set of molecules, carrying (pro)electrophilic features responsible for the activation of the Nrf2 pathway, as valuable pharmacologic tools to dissect the mechanistic connection between Nrf2 and NF-κB. We investigated whether the activation of the Nrf2 pathway by (pro)electrophilic compounds may interfere with the secretion of pro-inflammatory cytokines, during immune stimulation, in a human immortalized monocyte-like cell line (THP-1). The capability of compounds to affect the NF-κB pathway was also evaluated. We assessed the compounds-mediated regulation of cytokine and chemokine release by using Luminex X-MAP® technology in human primary peripheral blood mononuclear cells (PBMCs) upon LPS stimulation. We found that all compounds, also in the absence of electrophilic moieties, significantly suppressed the LPS-evoked secretion of pro-inflammatory cytokines such as TNFα and IL-1ß, but not of IL-8, in THP-1 cells. A reduction in the release of pro-inflammatory mediators similar to that induced by the compounds was also observed after siRNA mediated-Nrf2 knockdown, thus indicating that the attenuation of cytokine secretion cannot be directly ascribed to the activation of Nrf2 signaling pathway. Moreover, all compounds, with the exception of compound 1, attenuated the LPS-induced activation of the NF-κB pathway, by reducing the upstream phosphorylation of IκB, the NF-κB nuclear translocation, as well as the activation of NF-κB promoter. In human PBMCs, compound 4 and CURC attenuated TNFα release as observed in THP-1 cells, and all compounds acting as Nrf2 inducers significantly decreased the levels of MCP-1/CCL2, as well as the release of the pro-inflammatory cytokine IL-12. Altogether, the compounds induced a differential modulation of innate immune cytokine release, by differently regulating Nrf2 and NF-κB intracellular signaling pathways.

18.
Arch Toxicol ; 94(6): 2081-2095, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32328699

RESUMEN

We previously demonstrated the existence of a balance among steroid hormones, i.e. glucocorticoids and androgens, in RACK1 (receptor for activated C kinase 1) expression and innate immunity activation, which may offer the opportunity to use RACK1 expression as marker to evaluate immunotoxicity of hormone-active substances. Because of the existence of close interconnections between the different steroid hormone receptors with overlapping ligand specificities and signaling pathways, in this study, we wanted to investigate a possible effect of estrogenic active compounds, namely 17ß-estradiol, diethylstilbestrol, and zearalenone, on RACK-1 expression and innate immune responses using THP-1 cells as experimental model. All compounds increased RACK1 transcriptional activity as evaluated by reporter luciferase activity, mRNA expression as assessed by real time-PCR and protein expression by western blot analysis, which paralleled an increase in LPS-induced IL-8, TNF-α production, and CD86 expression, which we previously demonstrated to be dependent on RACK1/PKCß activation. As the induction of RACK1 expression can be blocked by the antagonist G15, induced by the agonist G1 and by the non-cell permeable 17ß-estradiol conjugated with BSA, a role of GPER (previously named GPR30) activation in estrogen-induced RACK1 expression could be demonstrated. In addition, a role of androgen receptor (AR) in RACK1 transcription was also demonstrated by the ability of flutamide, a nonsteroidal antiandrogen, to completely prevent diethylstilbestrol-induced RACK1 transcriptional activity and protein expression. Altogether, our data suggest that RACK1 may represent an interesting target of steroid-active compounds, and its evaluation may offer the opportunity to screen the immunotoxic potential of hormone-active substances.


Asunto(s)
Dietilestilbestrol/toxicidad , Estradiol/toxicidad , Estrógenos/toxicidad , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Receptores de Cinasa C Activada/metabolismo , Zearalenona/toxicidad , Citocinas/metabolismo , Disruptores Endocrinos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Proteínas de Neoplasias/genética , Prueba de Estudio Conceptual , Receptores de Cinasa C Activada/genética , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células THP-1 , Regulación hacia Arriba
19.
Pharmacol Res ; 143: 17-26, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30862604

RESUMEN

Recent data have demonstrated that triple negative breast cancer (TNBC) with high glucocorticoid receptor (GR) expression are associated to therapy resistance and increased mortality. Given that GR alternative splicing generates mainly GRα, responsible of glucocorticoids action, we investigated its role in the regulation of RACK1 (Receptor for Activated C Kinase 1), a scaffolding protein with a GRE (Glucocorticoid Response Element) site on its promoter and involved in breast cancer cells migration and invasion. We provide the first evidence that GRα transcriptionally regulates RACK1 by a mechanism connected to SRSF3 splicing factor, which promotes GRα, essential for RACK1 transcriptional regulation and consequently for cells migration. We also establish that this mechanism can be positively regulated by cortisol. Hence, our data elucidate RACK1 transcriptional regulation and demonstrate that SRSF3 involvement in cells migration implies its role in controlling different pathways thus highlighting that new players have to be considered in GR-positive TNBC.


Asunto(s)
Hidrocortisona/farmacología , Proteínas de Neoplasias , Receptores de Cinasa C Activada , Receptores de Glucocorticoides , Factores de Empalme Serina-Arginina , Neoplasias de la Mama Triple Negativas , Empalme Alternativo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Interferente Pequeño/genética , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Cicatrización de Heridas/efectos de los fármacos
20.
Int J Mol Sci ; 18(7)2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684670

RESUMEN

Immunosenescence defines the decline in immune function that occurs with aging. This has been associated, at least in part, with defective cellular signaling via protein kinase C (PKC) signal transduction pathways. Our data suggest reduced PKC activation and consequently reduced response to lipopolysaccharide (LPS) stimulation and cytokine release. The lack of PKC activation seems to be dependent on the reduced expression of the receptor for activated C kinase 1 (RACK1), a scaffolding protein involved in multiple signal transduction cascades. The defective expression of RACK1 may be dependent on age-related alteration of the balance between the adrenal hormones cortisol and dehydroepiandrosterone (DHEA). DHEA levels reduce with aging, while cortisol levels remain substantially unchanged, resulting in an overall increase in the cortisol:DHEA ratio. These hormonal changes are significant in the context of RACK1 expression and signaling function because DHEA administration in vivo and in vitro can restore the levels of RACK1 and the function of the PKC signaling cascade in aged animals and in human cells. In contrast, there is evidence that cortisol can act as a negative transcriptional regulator of RACK1 expression. The rack1 gene promoter contains a glucocorticoid responsive element that is also involved in androgen signaling. Furthermore DHEA may have an indirect influence on the post-transcriptional regulation of the functions of the glucocorticoid receptor. In this review, we will examine the role of the hormonal regulation of rack1 gene transcriptional regulation and the consequences on signaling and function in immune cells and immunosenescence.


Asunto(s)
Envejecimiento/inmunología , Andrógenos/metabolismo , Glucocorticoides/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Cinasa C Activada/metabolismo , Transducción de Señal , Animales , Humanos , Proteínas de Neoplasias/genética , Receptores de Cinasa C Activada/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...