Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 88(11): 1763-1777, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105197

RESUMEN

Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.


Asunto(s)
Células Madre Mesenquimatosas , Ingravidez , Humanos , Ingravidez/efectos adversos , Envejecimiento/fisiología , Senescencia Celular
2.
Stem Cells Dev ; 30(24): 1228-1240, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34714129

RESUMEN

Bone and muscle tissues are mostly susceptible to different kinds of hypodynamia, including real and simulated microgravity (sµg). To evaluate the effect of sµg on bone marrow (BM), male C57Bl/6N mice were divided into three groups: vivarium control (VC), 30-day hindlimb suspension (HS), and subsequent 12-h short-term support reloading (RL). The effects on BM total mononucleated cells (MNCs) as well as stromal and hematopoietic progenitors from murine tibia were studied. The number of BM MNCs, immunophenotype, proliferation, colony-forming units (CFUs), differentiation and secretory activity of hematopoietic and stromal BM cells were determined. HS led to a twofold decrease in MNCs, alteration of surface molecule expression profiles, suppression of proliferative activity of BM cells, and change of soluble mediators' levels. The stromal compartment was characterized by a decrease of CFU of fibroblasts and suppression of spontaneous osteo-commitment after HS. Among the hematopoietic precursors, a decrease in the total number of CFUs was found mainly at the expense of suppression of CFU-GM and CFU-GEMM. After RL, restoration of the stromal precursor's functional activity to control levels and overabundance of paracrine mediator's production were detected, whereas the complete recovery of hematopoietic precursor's activity did not occur. These data demonstrate the fast functional reaction of the stromal compartment on restoration of loading support.


Asunto(s)
Médula Ósea , Tibia , Animales , Células de la Médula Ósea , Diferenciación Celular/fisiología , Ensayo de Unidades Formadoras de Colonias , Masculino , Ratones , Células del Estroma
3.
Sci Adv ; 6(29): eaba4174, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32743068

RESUMEN

Magnetic levitational bioassembly of three-dimensional (3D) tissue constructs represents a rapidly emerging scaffold- and label-free approach and alternative conceptual advance in tissue engineering. The magnetic bioassembler has been designed, developed, and certified for life space research. To the best of our knowledge, 3D tissue constructs have been biofabricated for the first time in space under microgravity from tissue spheroids consisting of human chondrocytes. Bioassembly and sequential tissue spheroid fusion presented a good agreement with developed predictive mathematical models and computer simulations. Tissue constructs demonstrated good viability and advanced stages of tissue spheroid fusion process. Thus, our data strongly suggest that scaffold-free formative biofabrication using magnetic fields is a feasible alternative to traditional scaffold-based approaches, hinting a new perspective avenue of research that could significantly advance tissue engineering. Magnetic levitational bioassembly in space can also advance space life science and space regenerative medicine.

4.
J Photochem Photobiol B ; 199: 111596, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31450129

RESUMEN

Photodynamic therapy (PDT) is a non-invasive FDA and EMA-approved anticancer treatment modality. Initially developed for elimination of malignant cells, PDT affects all cells in the tumor bed including stromal cells. Stroma represents not only an important component of tumor microenvironment, but has a significant impact on tumor susceptibility to PDT and other anticancer therapies. However, the effects of PDT on stromal cells are poorly investigated. During PDT the tumor stroma can receive low-dose irradiation as a result of chosen regimen or limited depth of light penetration. Here, we characterized response of human mesenchymal stromal cells (MSCs) to low-dose PDT. In an in vitro model we demonstrated that low-dose PDT resulted in activation of Erk1/2 and inhibition of GSK-3 signaling in MSCs. PDT-mediated induction of intracellular reactive oxygen species (ROS) resulted in reorganization of MSC cytoskeleton and decreased cell motility. More importantly, low-dose PDT dramatically upregulated secretion of various proangiogenic factors (VEGF-A, IL-8, PAI-1, MMP-9, etc.) by MSCs and improved MSC ability to promote angiogenesis suggesting an increase in the pro-tumorigenic potential of MSCs. In contrast, co-cultivation of PDT-treated MSCs with lymphocytes resulted in significant decrease of MSC viability and potential increase in MSC immunogenicity, which may lead to increased anti-tumor immunity. Low-dose PDT in MSCs significantly inhibited secretion of CCL2 (MCP-1) potentially limiting infiltration of pro-tumorigenic macrophages. Altogether, our findings demonstrate that low-dose PDT significantly modifies functional properties of MSCs improving their pro-tumorigenic potential while simultaneously increasing potential immune stimulation suggesting possible mechanisms of stromal cell contribution to PDT efficacy.


Asunto(s)
Células Madre Mesenquimatosas/efectos de los fármacos , Fotoquimioterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Movimiento Celular , Supervivencia Celular/efectos de la radiación , Quimiocina CCL2/metabolismo , Técnicas de Cocultivo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Leucocitos Mononucleares/efectos de la radiación , Luz , Terapia por Luz de Baja Intensidad , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fármacos Fotosensibilizantes/farmacología , Codorniz/embriología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Cicatrización de Heridas/efectos de la radiación
5.
J Cell Biochem ; 119(3): 2875-2885, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29080356

RESUMEN

Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1+ -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1+ -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions.


Asunto(s)
Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Molécula 1 de Adhesión Intercelular/biosíntesis , Simulación de Ingravidez , Ingravidez , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos
6.
J Cell Physiol ; 233(2): 1535-1547, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28600879

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) are considered cue regulators of tissue remodeling. Their activity is strongly governed by local milieu, where O2 level is most important. The elevation of inflammatory mediators and acute O2 lowering may additionally modulate MSC activity. In present paper the priming effects of IFN-gamma on adipose tissue-derived MSCs (ASCs) at tissue-related O2 level (5%) and acute hypoxic stress (0.1% O2 ) were assessed as alterations of ASCs' CFU-F, proliferation, migration, osteo-commitment. IFN-gamma priming provoked ROS elevation, cell growth slowdown, attenuation of both spontaneous and induced osteodifferentiation of tissue O2 -adapted ASCs. The prominent changes in ASC cytoskeleton-related gene transcription was detected. IFN-gamma exposure shifted the ASC paracrine profile, suppressing the production of VEGF and IL-8, while MCP-1 and IL-6 were stimulated. Conditioned medium of IFN-gamma-primed ASCs did not activate vessel growth in the CAM assay, but induced endothelial cell migration in "wound closure." Short-term hypoxia suppressed CFU-F number, IFN-gamma-induced elevation of IL-6 and endothelial cell migration, while it abolished IFN-gamma-provoked VEGF inhibition. After N-acetyl cysteine treatment ROS level was partly abolished providing additional enhancement of IL-6 and suppression of IL-8 and VEGF production. These findings demonstrated that paracrine activity of ASCs in part may be governed by ROS level. Thus, this study first demonstrated that IFN-gamma priming itself and in combination with acute O2 deprivation could supply dual effects on ASC functions providing both stimulatory and hampering effects. The equilibrium of these factors is a substantial requirement for the execution of MSC remodeling functions.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Interferón gamma/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Hipoxia de la Célula , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Coturnix , Medios de Cultivo Condicionados/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Osteogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
7.
Cytotechnology ; 70(1): 299-312, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28975481

RESUMEN

Multipotent mesenchymal stem cells (MSCs) are an attractive tool for cell therapy and regenerative medicine. Being applied in vivo, allogeneic MSCs are faced with both activated and unstimulated immune cells. The effects of MSCs on activated immune cells are well described and are mainly suppressive. Less is known about the interaction of MSCs with unstimulated immune cells. We evaluated the contribution of tissue-related O2 level ("physiological" hypoxia-5% O2) and cell-to-cell contact to the interaction between allogeneic adipose tissue-derived MSCs (ASCs) and unstimulated peripheral blood mononuclear cells (PBMCs). Under both O2 levels, ASCs affected the immune response by elevating the proportion of CD69+ T cells and modifying the functional activity of unstimulated PBMCs, providing a significant reduction of ROS level and activation of lysosome compartment. "Physiological" hypoxia partially attenuated the ASC modulation of PBMC function, reducing CD69+ cell activation and more significantly supressing ROS. In direct co-culture, the ASC effects were more pronounced. PBMC viability was preferentially maintained, and the lymphocyte subset ratio was altered in favour of B cells. Our findings demonstrate that allogeneic ASCs do not enhance the activation of unstimulated immune cells and can provide supportive functions. The "hypoxic" phenotype of ASCs may be more "desirable" for the interaction with allogeneic immune cells that may be required in cell therapy protocols.

8.
Cell Biochem Funct ; 35(4): 232-243, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28589682

RESUMEN

Multipotent mesenchymal stromal cells are considered as a perspective tool in cell therapy and regenerative medicine. Unfortunately, autologous cell therapy does not always provide positive outcomes in elder donors, perhaps as a result of the alterations of stem cell compartments. The mechanisms of stem and progenitor cell senescence and the factors engaged are investigated intensively. In present paper, we elucidated the effects of tissue-related O2 on morphology, functions, and transcriptomic profile of adipose tissue-derived stromal cells (ASCs) in replicative senescence in vitro model. Replicatively senescent ASCs at ambient (20%) O2 (12-21 passages) demonstrated an increased average cell size, granularity, reactive oxygen species level, including anion superoxide, lysosomal compartment activity, and IL-6 production. Decreased ASC viability and proliferation, as well as the change of more than 10 senescence-associated gene expression were detected (IGF1, CDKN1C, ID1, CCND1, etc). Long-term ASC expansion at low O2 (5%) revoked in part the replicative senescence-associated alterations.


Asunto(s)
Tejido Adiposo/metabolismo , Senescencia Celular , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Técnicas de Cultivo de Célula , Hipoxia de la Célula , Células Cultivadas , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/citología
9.
Stem Cells Int ; 2016: 4726267, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26880965

RESUMEN

Human adipose tissue-stromal derived cells (ASCs) are considered a perspective tool for regenerative medicine. Depending on the application mode ASC/allogeneic immune cell interaction can occur in the systemic circulation under plenty high concentrations of O2 and in target tissues at lower O2 levels. Here we examined the effects of allogeneic PHA-stimulated peripheral blood mononuclear cells (PBMCs) on ASCs under ambient (20%) oxygen and "physiological" hypoxia (5% O2). As revealed with microarray analysis ASCs under 20% O2 were more affected by activated PBMCs, which was manifested in differential expression of more than 300 genes, whereas under 5% O2 only 140 genes were changed. Altered gene pattern was only partly overlapped at different O2 conditions. Under O2 ASCs retained their proliferative and differentiative capacities, mesenchymal phenotype, and intracellular organelle' state. ASCs were proinflammatory activated on transcription level that was confirmed by their ability to suppress activation and proliferation of mitogen-stimulated PBMCs. ASC/PBMCs interaction resulted in anti-inflammatory shift of paracrine mediators in conditioning medium with significant increase of immunosuppressive LIF level. Our data indicated that under both ambient and tissue-related O2 ASCs possessed immunosuppressive potential and maintained functional activity. Under "physiological" hypoxia ASCs were less susceptible to "priming" by allogeneic mitogen-activated PBMCs.

10.
Stem Cells Int ; 2016: 7260562, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28115943

RESUMEN

The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4-7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury.

11.
Cells Tissues Organs ; 200(5): 307-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407140

RESUMEN

A microenvironment low in O2 ('physiological' hypoxia) governs the functions of perivascular multipotent mesenchymal stromal cells, defining their involvement in tissue physiological homeostasis and regenerative remodelling. Acute hypoxic stress is considered as one of the important factors inducing tissue damage. Here, we evaluate the influence of short-term hypoxia (1% O2 for 24 h) on perivascular adipose tissue-derived cells (ASCs) permanently expanded in tissue-related O2 (5%) microenvironment. After hypoxic exposure, ASCs retained high viability, stromal cell morphology and mesenchymal phenotype (CD73+, CD90+, CD105+ and CD45-). Mild oxidative damage was unveiled as elevation of reactive oxygen species and thiobarbituric acid-active products, while no reduction in the activity of the antioxidant enzymes catalase and glutathione peroxidase and a 20% statistically significant increase in superoxide dismutase activity was detected. Expression of hypoxia-inducible factor (HIF)-1α and HIF-3α isoforms was differently regulated. HIF-1α displayed transient up-regulation, with maximum levels 30 min after acute hypoxic exposure, while HIF-3α was significantly up-regulated after 24 h. Up-regulation of ERK7, MEK1 and c-fos, and down-regulation of MKK6, p53, CCNA2, CCNB1 and CCNB2 were observed after 24 h of oxygen deprivation. Acute hypoxic exposure did not affect the gene expression of other mitogen-activated protein kinases (MAPKs) and MAPK kinases, MAPK/ERK kinase-interacting proteins, MAPK-activated transcription factors and scaffolding proteins. Significant stimulation of vascular endothelial growth factor α and interleukin-6 production was detected in ASC-conditioned medium. Thus, tissue O2-adapted ASCs are resistant to hypoxic stress, which can ensure their effective involvement in the regeneration of tissue damage under significant oxygen deprivation.


Asunto(s)
Tejido Adiposo/citología , Microambiente Celular/fisiología , Hipoxia/metabolismo , Células Madre Mesenquimatosas/citología , Oxígeno/metabolismo , Células del Estroma/citología , Hipoxia de la Célula/fisiología , Células Cultivadas , Regulación hacia Abajo , Humanos , Células Madre Mesenquimatosas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Regulación hacia Arriba
12.
Nanoscale Res Lett ; 9(1): 284, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24948901

RESUMEN

Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: 'Control' - 'Si' - 'SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).

13.
PLoS One ; 10(4): e0124939, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25919031

RESUMEN

The optimisation of haematopoietic stem and progenitor cell expansion is on demand in modern cell therapy. In this work, haematopoietic stem/progenitor cells (HSPCs) have been selected from unmanipulated cord blood mononuclear cells (cbMNCs) due to adhesion to human adipose-tissue derived stromal cells (ASCs) under standard (20%) and tissue-related (5%) oxygen. ASCs efficiently maintained viability and supported further HSPC expansion at 20% and 5% O2. During co-culture with ASCs, a new floating population of differently committed HSPCs (HSPCs-1) grew. This suspension was enriched with СD34+ cells up to 6 (20% O2) and 8 (5% O2) times. Functional analysis of HSPCs-1 revealed cobble-stone area forming cells (CAFCs) and lineage-restricted colony-forming cells (CFCs). The number of CFCs was 1.6 times higher at tissue-related O2, than in standard cultivation (20% O2). This increase was related to a rise in the number of multipotent precursors - BFU-E, CFU-GEMM and CFU-GM. These changes were at least partly ensured by the increased concentration of MCP-1 and IL-8 at 5% O2. In summary, our data demonstrated that human ASCs enables the selection of functionally active HSPCs from unfractionated cbMNCs, the further expansion of which without exogenous cytokines provides enrichment with CD34+ cells. ASCs efficiently support the viability and proliferation of cord blood haematopoietic progenitors of different commitment at standard and tissue-related O2 levels at the expense of direct and paracrine cell-to-cell interactions.


Asunto(s)
Sangre Fetal/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Oxígeno/metabolismo , Tejido Adiposo/citología , Adhesión Celular , Hipoxia de la Célula , Proliferación Celular , Técnicas de Cocultivo , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Mesenquimatosas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...