Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(35): e2300446120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37611056

RESUMEN

Nitrate distribution in soils is often heterogeneous. Plants have adapted to this by modifying their root system architecture (RSA). Previous studies showed that NITRATE-TRANSPORTER1.1 (NRT1.1), which also transports auxin, helps inhibit lateral root primordia (LRP) emergence in nitrate-poor patches, by preferentially transporting auxin away from the LRP. In this study, we identified the regulatory system for this response involving the transcription factor (TF), SENSITIVE-TO-PROTON-RHIZOTOXICITY1 (STOP1), which is accumulated in the nuclei of LRP cells under nitrate deficiency and directly regulates Arabidopsis NRT1.1 expression. Mutations in STOP1 mimic the root phenotype of the loss-of-function NRT1.1 mutant under nitrate deficiency, compared to wild-type plants, including increased LR growth and higher DR5promoter activity (i.e., higher LRP auxin signaling/activity). Nitrate deficiency-induced LR growth inhibition was almost completely reversed when STOP1 and the TF, TEOSINTE-BRANCHED1,-CYCLOIDEA,-PCF-DOMAIN-FAMILY-PROTEIN20 (TCP20), a known activator of NRT1.1 expression, were both mutated. Thus, the STOP1-TCP20 system is required for activation of NRT1.1 expression under nitrate deficiency, leading to reduced LR growth in nitrate-poor regions. We found this STOP1-mediated system is more active as growth media becomes more acidic, which correlates with reductions in soil nitrate as the soil pH becomes more acidic. STOP1 has been shown to be involved in RSA modifications in response to phosphate deficiency and increased potassium uptake, hence, our findings indicate that root growth regulation in response to low availability of the major fertilizer nutrients, nitrogen, phosphorus and potassium, all involve STOP1, which may allow plants to maintain appropriate root growth under the complex and varying soil distribution of nutrients.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nitratos , Factores de Transcripción/genética , Arabidopsis/genética , Transporte Biológico , Ácidos Indolacéticos , Proteínas de Plantas , Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética
2.
BMC Genomics ; 23(1): 534, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35870878

RESUMEN

BACKGROUND: Ribosomally-synthesized cyclic peptides are widely found in plants and exhibit useful bioactivities for humans. The identification of cyclic peptide sequences and their precursor proteins is facilitated by the growing number of sequenced genomes. While previous research largely focused on the chemical diversity of these peptides across various species, there is little attention to a broader range of potential peptides that are not chemically identified. RESULTS: A pioneering study was initiated to explore the genetic diversity of linusorbs, a group of cyclic peptides uniquely occurring in cultivated flax (Linum usitatissimum). Phylogenetic analysis clustered the 5 known linusorb precursor proteins into two clades and one singleton. Preliminary tBLASTn search of the published flax genome using the whole protein sequence as query could only retrieve its homologues within the same clade. This limitation was overcome using a profile-based mining strategy. After genome reannotation, a hidden Markov Model (HMM)-based approach identified 58 repeats homologous to the linusorb-embedded repeats in 8 novel proteins, implying that they share common ancestry with the linusorb-embedded repeats. Subsequently, we developed a customized profile composed of a random linusorb-like domain (LLD) flanked by 5 conserved sites and used it for string search of the proteome, which extracted 281 LLD-containing repeats (LLDRs) in 25 proteins. Comparative analysis of different repeat categories suggested that the 5 conserved flanking sites among the non-homologous repeats have undergone convergent evolution driven by functional selection. CONCLUSIONS: The profile-based mining approach is suitable for analyzing repetitive sequences. The 25 LLDR proteins identified herein represent the potential diversity of cyclic peptides within the flax genome and lay a foundation for further studies on the functions and evolution of these protein tandem repeats.


Asunto(s)
Lino , Secuencia de Bases , Lino/genética , Genoma de Planta , Humanos , Péptidos Cíclicos/genética , Filogenia
3.
Environ Pollut ; 295: 118667, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896397

RESUMEN

Current approaches in chemical hazard assessment face significant challenges because they rely on live animal testing, which is time-consuming, expensive, and ethically questionable. These concerns serve as an impetus to develop new approach methodologies (NAMs) that do not rely on live animal tests. This study explored a molecular benchmark dose (BMD) approach using a 7-day embryo-larval fathead minnow (FHM) assay to derive transcriptomic points-of-departure (tPODs) to predict apical BMDs of fluoxetine (FLX), a highly prescribed and potent selective serotonin reuptake inhibitor frequently detected in surface waters. Fertilized FHM embryos were exposed to graded concentrations of FLX (confirmed at < LOD, 0.19, 0.74, 3.38, 10.2, 47.5 µg/L) for 32 days. Subsets of fish were subjected to omics and locomotor analyses at 7 days post-fertilization (dpf) and to histological and biometric measurements at 32 dpf. Enrichment analyses of transcriptomics and proteomics data revealed significant perturbations in gene sets associated with serotonergic and axonal functions. BMD analysis resulted in tPOD values of 0.56 µg/L (median of the 20 most sensitive gene-level BMDs), 5.0 µg/L (tenth percentile of all gene-level BMDs), 7.51 µg/L (mode of the first peak of all gene-level BMDs), and 5.66 µg/L (pathway-level BMD). These tPODs were protective of locomotor and reduced body weight effects (LOEC of 10.2 µg/L) observed in this study and were reflective of chronic apical BMDs of FLX reported in the literature. Furthermore, the distribution of gene-level BMDs followed a bimodal pattern, revealing disruption of sensitive neurotoxic pathways at low concentrations and metabolic pathway perturbations at higher concentrations. This is one of the first studies to derive protective tPODs for FLX using a short-term embryo assay at a life stage not considered to be a live animal under current legislations.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Cyprinidae/genética , Fluoxetina/toxicidad , Larva , Transcriptoma
4.
Environ Sci Technol ; 55(15): 10608-10618, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34292719

RESUMEN

There is an urgent demand for more efficient and ethical approaches in ecological risk assessment. Using 17α-ethinylestradiol (EE2) as a model compound, this study established an embryo benchmark dose (BMD) assay for rainbow trout (RBT; Oncorhynchus mykiss) to derive transcriptomic points-of-departure (tPODs) as an alternative to live-animal tests. Embryos were exposed to graded concentrations of EE2 (measured: 0, 1.13, 1.57, 6.22, 16.3, 55.1, and 169 ng/L) from hatch to 4 and up to 60 days post-hatch (dph) to assess molecular and apical responses, respectively. Whole proteome analyses of alevins did not show clear estrogenic effects. In contrast, transcriptomics revealed responses that were in agreement with apical effects, including excessive accumulation of intravascular and hepatic proteinaceous fluid and significant increases in mortality at 55.1 and 169 ng/L EE2 at later time points. Transcriptomic BMD analysis estimated the median of the 20th lowest geneBMD to be 0.18 ng/L, the most sensitive tPOD. Other estimates (0.78, 3.64, and 1.63 ng/L for the 10th percentile geneBMD, first peak geneBMD distribution, and median geneBMD of the most sensitive over-represented pathway, respectively) were within the same order of magnitude as empirically derived apical PODs for EE2 in the literature. This 4-day alternative RBT embryonic assay was effective in deriving tPODs that are protective of chronic effects of EE2.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Benchmarking , Estrógenos , Etinilestradiol/toxicidad , Oncorhynchus mykiss/genética , Transcriptoma , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Technol ; 55(8): 5024-5036, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33755441

RESUMEN

There is increasing pressure to develop alternative ecotoxicological risk assessment approaches that do not rely on expensive, time-consuming, and ethically questionable live animal testing. This study aimed to develop a comprehensive early life stage toxicity pathway model for the exposure of fish to estrogenic chemicals that is rooted in mechanistic toxicology. Embryo-larval fathead minnows (FHM; Pimephales promelas) were exposed to graded concentrations of 17α-ethinylestradiol (water control, 0.01% DMSO, 4, 20, and 100 ng/L) for 32 days. Fish were assessed for transcriptomic and proteomic responses at 4 days post-hatch (dph), and for histological and apical end points at 28 dph. Molecular analyses revealed core responses that were indicative of observed apical outcomes, including biological processes resulting in overproduction of vitellogenin and impairment of visual development. Histological observations indicated accumulation of proteinaceous fluid in liver and kidney tissues, energy depletion, and delayed or suppressed gonad development. Additionally, fish in the 100 ng/L treatment group were smaller than controls. Integration of omics data improved the interpretation of perturbations in early life stage FHM, providing evidence of conservation of toxicity pathways across levels of biological organization. Overall, the mechanism-based embryo-larval FHM model showed promise as a replacement for standard adult live animal tests.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Etinilestradiol/toxicidad , Proteómica , Diferenciación Sexual , Vitelogeninas , Contaminantes Químicos del Agua/toxicidad
6.
Med Sci Educ ; 29(1): 11-17, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34457441

RESUMEN

INTRODUCTION: The use of diagnostic radiology images while teaching has been proven to enhance student learning. The incorporation of images in the Digital Imaging and Communications in Medicine (DICOM) format has been hindered by the lack of integrated, DICOM image-compatible, viewing software. BACKGROUND: A project was developed to facilitate the migration of clinical diagnostic radiology images, in their native DICOM format into the curriculum at the undergraduate level, including the Medical School, while anonymizing the images and presenting them in a way that simulates a clinical Picture Archive and Communication System (PACS). These images can be directly incorporated into Blackboard Learn or into other applications using embedded URLs. DISCUSSION: A teaching file server was deployed using the Medical Imaging Resource Community-Teaching File System (MIRC-TFS) platform. An HTML5, DICOM image viewing server was developed and deployed. Plugins were created to integrate the anonymized images in the MIRC-TFS server with the HTML5 DICOM viewer and Blackboard Learn. The solution was deployed at an undergraduate level. CONCLUSION: This project has resulted in the successful development and deployment of a variety of solutions, including an HTML 5 DICOM viewer, that has allowed for the incorporation of anonymized DICOM images from a clinical imaging repository into the undergraduate curriculum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...