Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(7): 4622-4632, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38954405

RESUMEN

Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid detection and isolation in environments with small populations and in low-resource settings. Given the ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2, and various influenza strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses locally before outbreaks can occur and monitor their progression. To this end, we have developed an easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several orders of magnitude lower limit of detection than that of mass spectrometry. This is enabled by wafer-scale production and aptamers preattached with linker molecules, producing 44 chips at once. Each chip can simultaneously detect four target analytes using 20 transistors segregated into four sets of five for each analyte to allow for immediate statistical analysis. We show our platform's ability to rapidly detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule (caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable wastewater epidemiology in low-resource settings and be instrumental for rapid, local outbreak prevention.


Asunto(s)
Técnicas Biosensibles , Grafito , SARS-CoV-2 , Aguas Residuales , Aguas Residuales/virología , Aguas Residuales/química , SARS-CoV-2/aislamiento & purificación , Humanos , Técnicas Biosensibles/métodos , Grafito/química , COVID-19/epidemiología , COVID-19/diagnóstico , COVID-19/virología , Virus Sincitiales Respiratorios/aislamiento & purificación , Ensayo de Materiales , Monitoreo Epidemiológico Basado en Aguas Residuales , Materiales Biocompatibles/química , Tamaño de la Partícula
2.
Adv Mater ; 36(24): e2310944, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470991

RESUMEN

Anomalous transport of topological semimetals has generated significant interest for applications in optoelectronics, nanoscale devices, and interconnects. Understanding the origin of novel transport is crucial to engineering the desired material properties, yet their orders of magnitude higher transport than single-particle mobilities remain unexplained. This work demonstrates the dramatic mobility enhancements result from phonons primarily returning momentum to electrons due to phonon-electron dominating over phonon-phonon scattering. Proving this idea, proposed by Peierls in 1932, requires tuning electron and phonon dispersions without changing symmetry, topology, or disorder. This is achieved by combining de Haas - van Alphen (dHvA), electron transport, Raman scattering, and first-principles calculations in the topological semimetals MX2 (M = Nb, Ta and X = Ge, Si). Replacing Ge with Si brings the transport mobilities from an order magnitude larger than single particle ones to nearly balanced. This occurs without changing the crystal structure or topology and with small differences in disorder or Fermi surface. Simultaneously, Raman scattering and first-principles calculations establish phonon-electron dominated scattering only in the MGe2 compounds. Thus, this study proves that phonon-drag is crucial to the transport properties of topological semimetals and provides insight to engineer these materials further.

3.
Nature ; 628(8008): 515-521, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509374

RESUMEN

The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.

4.
Nano Lett ; 23(20): 9392-9398, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819081

RESUMEN

Anode-free all-solid-state lithium metal batteries (ASLMBs) promise high energy density and safety but suffer from a low initial Coulombic efficiency and rapid capacity decay, especially at high cathode loadings. Using operando techniques, we concluded these issues were related to interfacial contact loss during lithium stripping. To address this, we introduce a conductive carbon felt elastic layer that self-adjusts the pressure at the anode side, ensuring consistent lithium-solid electrolyte contact. This layer simultaneously provides electronic conduction and releases the plating pressure. Consequently, the first Coulombic efficiency dramatically increases from 58.4% to 83.7% along with a >10-fold improvement in cycling stability. Overall, this study reveals an approach for enhancing anode-free ASLMB performance and longevity by mitigating lithium stripping inefficiency through self-adjusting interfacial pressure enabled by a conductive elastic interlayer.

5.
Nat Commun ; 14(1): 3147, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253746

RESUMEN

The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Technological solutions reflect this trade-off, achieving the desired transparencies only by reducing the conductor thickness or carrier density at the expense of a lower conductance. Here we demonstrate that highly anisotropic crystalline conductors offer an alternative solution, avoiding this compromise by separating the directions of conduction and transmission. We demonstrate that slabs of the layered oxides Sr2RuO4 and Tl2Ba2CuO6+δ are optically transparent even at macroscopic thicknesses >2 µm for c-axis polarized light. Underlying this observation is the fabrication of out-of-plane slabs by focused ion beam milling. This work provides a glimpse into future technologies, such as highly polarized and addressable optical screens.

6.
Angew Chem Int Ed Engl ; 62(20): e202302363, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36917787

RESUMEN

Due to its outstanding safety and high energy density, all-solid-state lithium-sulfur batteries (ASLSBs) are considered as a potential future energy storage technology. The electrochemical reaction pathway in ASLSBs with inorganic solid-state electrolytes is different from Li-S batteries with liquid electrolytes, but the mechanism remains unclear. By combining operando Raman spectroscopy and ex situ X-ray absorption spectroscopy, we investigated the reaction mechanism of sulfur (S8 ) in ASLSBs. Our results revealed that no Li2 S8, Li2 S6, and Li2 S4 were formed, yet Li2 S2 was detected. Furthermore, first-principles structural calculations were employed to disclose the formation energy of solid state Li2 Sn (1≤n≤8), in which Li2 S2 was a metastable phase, consistent with experimental observations. Meanwhile, partial S8 and Li2 S2 remained at the full lithiation stage, suggesting incomplete reaction due to sluggish reaction kinetics in ASLSBs.

7.
ACS Appl Mater Interfaces ; 14(51): 57144-57152, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516339

RESUMEN

Integrating different two-dimensional (2D) crystals is highly demanded for advancing their application in next-generation electronics. 2D transition metal carbides, nitrides, and carbonitrides (MXenes), as new members in the 2D family, are promising candidates for 2D electrodes because of their high conductivity and stability. However, integrating MXenes with other 2D semiconductors has been underdeveloped due to the limitation of top-down etching synthesis of MXenes. Our recent development of atomic substitution synthesis achieved ultrathin non-van der Waals (non-vdW) transition metal nitrides (TMNs) through the conversion of vdW transition metal dichalcogenides (TMDs), opening opportunities of combining TMDs with TMNs via controllable partial conversion. Here, we perform an in-depth study of the atomic substitution process from semiconducting MoS2 to metallic MoN and realize both lateral and vertical MoN-MoS2 heterostructures via edge and surface epitaxial conversion, respectively. The structural evolution investigation from MoS2 to MoN using high-resolution transmission electron microscopy suggests atomically bonded interface for lateral heterostructures and moiré pattern in vertical heterostructures. Moreover, mask-assisted atomic substitution is applied to create patterned MoN-MoS2-MoN lateral heterostructures. Electrical measurements reveal a Schottky barrier height of meV for a three-layer MoS2-MoN interface, showcasing the potential of atomically bonded lateral heterostructures for MoS2 electronics with MoN as contact electrodes.

8.
Phys Rev Lett ; 129(3): 037201, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905346

RESUMEN

Relativistic Mott insulators known as "Kitaev materials" potentially realize spin liquids hosting non-Abelian anyons. Motivated by fault-tolerant quantum-computing applications in this setting, we introduce a dynamical anyon-generation protocol that exploits universal edge physics. The setup features holes in the spin liquid, which define energetically cheap locations for non-Abelian anyons, connected by a narrow bridge that can be tuned between spin liquid and topologically trivial phases. We show that modulating the bridge from trivial to spin liquid over intermediate time scales-quantified by analytics and extensive simulations-deposits non-Abelian anyons into the holes with O(1) probability. The required bridge manipulations can be implemented by integrating the Kitaev material into magnetic tunnel junction arrays that engender locally tunable exchange fields. Combined with existing readout strategies, our protocol reveals a path to topological qubit experiments in Kitaev materials at zero applied magnetic field.

9.
Nature ; 606(7916): 896-901, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676485

RESUMEN

The observation of the Higgs boson solidified the standard model of particle physics. However, explanations of anomalies (for example, dark matter) rely on further symmetry breaking, calling for an undiscovered axial Higgs mode1. The Higgs mode was also seen in magnetic, superconducting and charge density wave (CDW) systems2,3. Uncovering the vector properties of a low-energy mode is challenging, and requires going beyond typical spectroscopic or scattering techniques. Here we discover an axial Higgs mode in the CDW system RTe3 using the interference of quantum pathways. In RTe3 (R = La, Gd), the electronic ordering couples bands of equal or different angular momenta4-6. As such, the Raman scattering tensor associated with the Higgs mode contains both symmetric and antisymmetric components, which are excited via two distinct but degenerate pathways. This leads to constructive or destructive interference of these pathways, depending on the choice of the incident and Raman-scattered light polarization. The qualitative behaviour of the Raman spectra is well captured by an appropriate tight-binding model, including an axial Higgs mode. Elucidation of the antisymmetric component is direct evidence that the Higgs mode contains an axial vector representation (that is, a pseudo-angular momentum) and hints that the CDW is unconventional. Thus, we provide a means for measuring quantum properties of collective modes without resorting to extreme experimental conditions.

10.
Adv Sci (Weinh) ; 9(21): e2200186, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35596612

RESUMEN

Proximity effect, which is the coupling between distinct order parameters across interfaces of heterostructures, has attracted immense interest owing to the customizable multifunctionalities of diverse 3D materials. This facilitates various physical phenomena, such as spin order, charge transfer, spin torque, spin density wave, spin current, skyrmions, and Majorana fermions. These exotic physics play important roles for future spintronic applications. Nevertheless, several fundamental challenges remain for effective applications: unavoidable disorder and lattice mismatch limits in the growth process, short characteristic length of proximity, magnetic fluctuation in ultrathin films, and relatively weak spin-orbit coupling (SOC). Meanwhile, the extensive library of atomically thin, 2D van der Waals (vdW) layered materials, with unique characteristics such as strong SOC, magnetic anisotropy, and ultraclean surfaces, offers many opportunities to tailor versatile and more effective functionalities through proximity effects. Here, this paper focuses on magnetic proximity, i.e., proximitized magnetism and reviews the engineering of magnetism-related functionalities in 2D vdW layered heterostructures for next-generation electronic and spintronic devices. The essential factors of magnetism and interfacial engineering induced by magnetic layers are studied. The current limitations and future challenges associated with magnetic proximity-related physics phenomena in 2D heterostructures are further discussed.

11.
ACS Nano ; 16(3): 3704-3714, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35201755

RESUMEN

By monitoring opioid metabolites, wastewater-based epidemiology (WBE) could be an excellent tool for real-time information on the consumption of illicit drugs. A key limitation of WBE is the reliance on costly laboratory-based techniques that require substantial infrastructure and trained personnel, resulting in long turnaround times. Here, we present an aptamer-based graphene field effect transistor (AptG-FET) platform for simultaneous detection of three different opioid metabolites. This platform provides a reliable, rapid, and inexpensive method for quantitative analysis of opioid metabolites in wastewater. The platform delivers a limit of detection 2-3 orders of magnitude lower than previous reports, but in line with the concentration range (pg/mL to ng/mL) of these opioid metabolites present in real samples. To enable multianalyte detection, we developed a facile, reproducible, and high-yield fabrication process producing 20 G-FETs with integrated side gate platinum (Pt) electrodes on a single chip. Our devices achieved the selective multianalyte detection of three different metabolites: noroxycodone (NX), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), and norfentanyl (NF) in wastewater diluted 20× in buffer.


Asunto(s)
Grafito , Drogas Ilícitas , Analgésicos Opioides , Electrodos , Drogas Ilícitas/análisis , Aguas Residuales/análisis , Aguas Residuales/química
12.
Sci Adv ; 8(2): eabl7707, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030029

RESUMEN

Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet­NiPS3, from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS3. Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.

13.
Nat Commun ; 12(1): 5292, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489411

RESUMEN

Whereas electron-phonon scattering relaxes the electron's momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2 with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid.

14.
Nature ; 595(7868): 521-525, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34290425

RESUMEN

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

15.
Nat Mater ; 20(12): 1601-1614, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34127824

RESUMEN

For many materials, a precise knowledge of their dispersion spectra is insufficient to predict their ordered phases and physical responses. Instead, these materials are classified by the geometrical and topological properties of their wavefunctions. A key challenge is to identify and implement experiments that probe or control these quantum properties. In this Review, we describe recent progress in this direction, focusing on nonlinear electromagnetic responses that arise directly from quantum geometry and topology. We give an overview of the field by discussing theoretical ideas, experiments and the materials that drive them. We conclude by discussing how these techniques can be combined with device architectures to uncover, probe and ultimately control quantum phases with emergent topological and correlated properties.


Asunto(s)
Fenómenos Electromagnéticos
16.
Phys Rev Lett ; 127(26): 267203, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35029465

RESUMEN

Topological magnonic materials have attracted much interest because of the potential for dissipationless spintronic applications. Pyrochlore iridates are theoretically regarded as good candidates for designing topological magnon bands. However, experimental identification of topological magnon bands in pyrochlore iridates remains elusive. We explored this possibility in Y_{2}Ir_{2}O_{7} using Raman spectroscopy to measure both the single-magnon excitations and anomalous phonon shifts. From the single-magnon energies and tight-binding model calculations concerning the phonons, we determined the key parameters in the spin Hamiltonian. These confirm that Y_{2}Ir_{2}O_{7} hosts a nontrivial magnon band topology distinct from other pyrochlore iridate compounds. Our work demonstrates that pyrochlore iridates constitute a system in which the magnon band topology can be tailored and that Raman spectroscopy is a powerful technique to explore magnon band topology.

17.
Nano Lett ; 20(12): 8446-8452, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33166150

RESUMEN

Two-dimensional nanoelectronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with ab initio calculations establish the large work function and narrow bands of α-RuCl3 enable modulation doping of exfoliated single and bilayer graphene, chemical vapor deposition grown graphene and WSe2, and molecular beam epitaxy grown EuS. We further demonstrate proof of principle photovoltage devices, control via twist angle, and charge transfer through hexagonal boron nitride. Short-ranged lateral doping (≤65 nm) and high homogeneity are achieved in proximate materials with a single layer of α-RuCl3. This leads to the best-reported monolayer graphene mobilities (4900 cm2/(V s)) at these high hole densities (3 × 1013 cm-2) and yields larger charge transfer to bilayer graphene (6 × 1013 cm-2).

18.
Rev Sci Instrum ; 91(7): 073909, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752826

RESUMEN

The exploration of new materials, novel quantum phases, and devices requires ways to prepare cleaner samples with smaller feature sizes. Initially, this meant the use of a cleanroom that limits the amount and size of dust particles. However, many materials are highly sensitive to oxygen and water in the air. Furthermore, the ever-increasing demand for a quantum workforce, trained and able to use the equipment for creating and characterizing materials, calls for a dramatic reduction in the cost to create and operate such facilities. To this end, we present our cleanroom-in-a-glovebox, a system that allows for the fabrication and characterization of devices in an inert argon atmosphere. We demonstrate the ability to perform a wide range of characterization as well as fabrication steps, without the need for a dedicated room, all in an argon environment. Finally, we discuss the custom-built antechamber attached to the back of the glovebox. This antechamber allows the glovebox to interface with ultra-high vacuum equipment such as molecular-beam epitaxy and scanning tunneling microscopy.

19.
Sci Adv ; 6(30): eabb9379, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32832677

RESUMEN

Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground states. Chromium trihalides provided the first such example with a change of interlayer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer previously unknown ground states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the nonmagnetic ligand atoms (Cl, Br, I). We synthesize a three-halide series, CrCl3 - x - y Br x I y , and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl3. First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of interlayer coupling in the bulk of CrCl3 - x - y Br x I y crystals at the same field as in the exfoliation experiments.

20.
Biosens Bioelectron ; 156: 112123, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32174552

RESUMEN

The rapid increase in antibiotic resistant pathogenic bacteria has become a global threat, which besides the development of new drugs, requires rapid, cheap, scalable, and accurate diagnostics. Label free biosensors relying on electrochemical, mechanical, and mass based detection of whole bacterial cells have attempted to meet these requirements. However, the trade-off between selectivity and sensitivity of such sensors remains a key challenge. In particular, point-of-care diagnostics that are able to reduce and/or prevent unneeded antibiotic prescriptions require highly specific probes with sensitive and accurate transducers that can be miniaturized and multiplexed, and that are easy to operate and cheap. Towards achieving this goal, we present a number of advances in the use of graphene field effect transistors (G-FET) including the first use of peptide probes to electrically detect antibiotic resistant bacteria in a highly specific manner. In addition, we dramatically reduce the needed concentration for detection by employing dielectrophoresis for the first time in a G-FET, allowing us to monitor changes in the Dirac point due to individual bacterial cells. Specifically, we realized rapid binding of bacterial cells to a G-FET by electrical field guiding to the device to realize an overall 3 orders of magnitude decrease in cell-concentration enabling a single-cell detection limit, and 9-fold reduction in needed time to 5 min. Utilizing our new biosensor and procedures, we demonstrate the first selective, electrical detection of the pathogenic bacterial species Staphylococcus aureus and antibiotic resistant Acinetobacter baumannii on a single platform.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Técnicas Biosensibles/instrumentación , Farmacorresistencia Bacteriana , Transistores Electrónicos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Bacterias/aislamiento & purificación , Infecciones Bacterianas/tratamiento farmacológico , Diseño de Equipo , Humanos , Análisis de la Célula Individual/instrumentación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...