Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(22): 15441-15448, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38741954

RESUMEN

Calcium alginate elastic capsules with a core-shell structure are versatile spherical solid beads that can be produced in large quantities using various techniques. This type of capsule is a promising platform for cell culture applications, owing to its mechanical elasticity and transparency. This paper reports the production of calcium alginate capsules with high consistency, and for the first time, demonstrates the feasibility of the capsules for microalgal cultivation. Cell growth analysis reveals that the vibrationally-shaken calcium alginate elastic capsule platform yielded a higher maximum cell number (4.86 × 108 cells per mL) during the cultivation period than the control solution platforms. Aquafeed and food supplements for humans are the targeted applications of this novel platform.

2.
Sci Total Environ ; 931: 172939, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38701928

RESUMEN

Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.


Asunto(s)
Dieta , Euphausiacea , Yubarta , Animales , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Regiones Antárticas , Ácidos Grasos/análisis , Cambio Climático
3.
J Environ Manage ; 355: 120501, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437746

RESUMEN

Damming of rivers poses a significant threat to freshwater ecosystems. Previous studies about the impact of damming on river ecosystems have mostly focused on large dams, with the impact of small dams largely unknown. Further, while the impacts of dams on aquatic communities have been widely studied, the effect on energy flow across river food webs remains unclear. In recent years, long-chain polyunsaturated fatty acid analysis (LC-PUFA) has emerged as a promising technique for assessing food quality and trophic interactions. In this study, LC-PUFA was applied to explore the nutritional effects of small dams on river food webs. A field investigation was conducted at upstream and downstream areas of three small dams in the headwaters of Dongjiang River, China, to evaluate the impact of small dams on the nutritional quality of basal food sources, and their consequent impacts on aquatic consumers and trophic links. Basal food sources (i.e., submerged leaves, macrophytes and periphyton) and aquatic consumers (i.e., macroinvertebrates and fish) were collected, and their fatty acid (FA) composition was measured. Our results showed that periphyton, rather than submerged leaves and macrophytes, was the primary high-quality food source for aquatic consumers, providing them with LC-PUFA, irrespective of whether sites were upstream or downstream. Damming the streams induced changes in aqueous nutrient concentrations (TP, PO4-P, DIN, and TN) from upstream to downstream of the dams, leading to significant variation in periphyton FA content. Compared with periphyton collected at downstream sites, periphyton at upstream sites contained higher LC-PUFA, but lower short-chain PUFA. Differences in periphyton LC-PUFA between the upstream and downstream areas of dams were reflected in the FA profiles of invertebrate grazers and filterers, and further transferred to fish. Furthermore, decreased periphyton nutritional quality at the downstream of the dams was one of the reasons for the simplification of stream food webs. Our results indicated that small dams negatively affected food webs, emphasizing the importance of high-quality food sources for stream ecosystems. We suggest that the trophic integrity of river food webs hinges on the dietary availability of periphyton supplying physiologically highly required nutrients for consumers and must thus not be compromised by damming of streams or other alterations.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Ríos , Agua Dulce , Ácidos Grasos , Calidad de los Alimentos
4.
Proc Biol Sci ; 290(2003): 20231204, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37464756

RESUMEN

The inter-relationships between cellular phosphorus (P) storage, dissolved inorganic P (DIP) uptake affinity, alkaline phosphatase activity (APA) and dissolved inorganic nitrogen (DIN) concentrations were studied in two ubiquitous diazotrophic freshwater cyanobacteria, Raphidiopsis raciborskii (six strains) and Chrysosporum ovalisporum (two strains). DIP uptake kinetics were measured using rates of incorporation of the radio-isotope, 33P and APA as a proxy for DOP-ester utilization. The study showed that DIP uptake of individual strains followed Michaelis-Menten kinetics (modified in our study to incorporate cellular P quotas), but differed with DIN and P availability, and between growth stages. High-affinity DIP uptake and APA were activated below a P quota threshold of approximately 0.01 µg P µg-1 C across the species and strains. C. ovalisporum had significantly higher APA and P quotas (per unit C and cell) but lower uptake affinity than R. raciborskii. Demand for DIP by C. ovalisporum increased when N fixation occurred, but typically not for R. raciborskii. Our results indicate that cyanobacterial species and strains differ in their strategies to P limiting conditions, and highlight the interplay between N and P. Physiological adaptations like APA and diazotrophy of cyanobacteria adapting to low DIP and/or DIN conditions may occur simultaneously and drive species dominance in oligotrophic environments.


Asunto(s)
Cianobacterias , Fósforo , Agua Dulce , Cinética , Fijación del Nitrógeno
5.
J Environ Manage ; 343: 118187, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235987

RESUMEN

Targeting catchment nutrient critical source areas (CSAs) (areas contributing most of the nutrients in a catchment) is an efficient way to prioritize remediation sites for reducing nutrient runoff to waterways. We tested if the soil slurry approach - with particle sizes and sediment concentrations representative of those in streams during high rainfall events - can be used to identify potential CSAs within individual land use types, examine fire impacts, and identify the contribution of leaf litter in topsoil to nutrient export in subtropical catchments. We first confirmed the slurry approach met the prerequisite to identify CSAs with relatively higher nutrient contribution (not absolute load estimation) by comparing the slurry sampling with stream nutrient monitoring data. We validated that: 1) differences in slurry total nitrogen to phosphorus mass ratios from different land uses were consistent with stream monitoring data; and 2) our estimated nutrient export contribution from agricultural land, via the slurry approach, was comparable to that derived from monitoring data. Additionally, we found nutrient concentrations in slurries differed across soil types and management practice within individual land uses, correlating with nutrient concentrations in fine particles. These results indicate the slurry approach can be used to identify potential small-scale CSAs. Slurry results from burnt soils were also comparable to other studies showing increased levels of dissolved nutrient loss and higher nitrogen than phosphorus loss, than non-burnt soils. The slurry method also showed the contribution of leaf litter to slurry nutrient concentrations from topsoil was greater for dissolved nutrients than particulate nutrients, indicating different forms of nutrients need to be considered for impacts of vegetation. Our study reveals that the slurry method can be used to identify potential small-scale CSAs within the same land use from erosion and can account for impacts of vegetation and bushfires, providing timely information to guide catchment restoration actions.


Asunto(s)
Monitoreo del Ambiente , Suelo , Fósforo/análisis , Nitrógeno/análisis , Nutrientes
6.
J Environ Manage ; 339: 117902, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37060695

RESUMEN

Nutrient offsetting allows nutrient point source polluters to pay for diffuse source nutrient reductions, or improvements in nutrient load reductions from alternative point sources. These programs have the potential to provide a more cost-effective approach to achieve water quality goals in waterways compared to infrastructure upgrades. However, worldwide adoption of nutrient offset/trading has not been realized. Here, we identified the biophysical-chemical knowledge gaps that can act as barriers to adopting these programs and summarized areas where further research is needed. This includes a) evaluating if any appropriate spatial scale (local-, catchment-, or regional-scale) and time scale (especially for areas with dry/wet cycles) exists to achieve nutrient load management goals, and b) quantifying nutrient characteristic differences and load contributions between point and diffuse sources to determine possible offsets between the two. Where offsets are appropriate, there is also a need to 1) improve monitoring design and reduce modelling uncertainties to better quantify diffuse nutrient loads; 2) quantify and manage uncertainties in catchment interventions to reduce nutrient loads, and design effective long-term monitoring and maintenance to sustain intervention outcomes; 3) prioritize areas within catchments that are key nutrient sources for catchment interventions to achieve the optimal outcomes for nutrient load management and catchment and aquatic ecosystem health; and 4) develop methodologies to determine the environmental equivalency ratio between different nutrient sources in terms of ecosystem effects. This would include identifying the best metric to quantify equivalency ratios, determining discharge patterns for different nutrient sources, and linking this with ecosystem responses across seasons and in the downstream receiving environment. Addressing the identified knowledge gaps will improve the program feasibility assessment process as well as confidence and certainty in the environmental outcomes of nutrient offsetting.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Calidad del Agua , Estaciones del Año
7.
Environ Sci Pollut Res Int ; 30(23): 63941-63952, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37055695

RESUMEN

Outbreaks of Microcystis blooms can affect growth of submerged plants, which in turn can inhibit cyanobacterial growth. Microcystin (MC)-producing and non-MC-producing Microcystis strains typically coexist in Microcystis-dominated blooms. However, the interaction between submerged plants and Microcystis at strain level is not clear. This study was aimed at assessing the effects of a submerged macrophyte Myriophyllum spicatum on one MC-producing versus one non-MC-producing strains of the cyanobacterium Microcystis using plant-Microcystis co-culture experiments. The impacts of Microcystis on M. spicatum were also examined. It showed that the MC-producing Microcystis strain had a higher resistance to negative impacts by the cocultured submerged plant M. spicatum than the non-MC-producing strain. By contrast, the plant M. spicatum was impacted more by the MC-producing Microcystis than the non-MC-producer. The associated bacterioplankton community was affected more by the MC-producing Microcystis than the cocultured M. spicatum. The MC cell quotas were significantly higher in the coculture treatment (the PM + treatment, p < 0.05), indicating that the production and release of MCs might be a key factor responsible for the reduced impact of M. spicatum. The higher concentrations of dissolved organic and reducing inorganic compounds might eventually exacerbate the recovering capacity of coexisting submerged plants. Overall, this study indicated that the capacity to produce MCs, as well as the density of Microcystis, should be taken into account when attempting to reestablish submerged vegetation to undertake remediation works.


Asunto(s)
Cianobacterias , Microcystis , Microcistinas
8.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35749580

RESUMEN

David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Eutrofización , Cianobacterias/fisiología , Fósforo , Nitrógeno
9.
Environ Pollut ; 303: 119118, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278586

RESUMEN

Sediment denitrification plays an important role in nitrogen removal in aquatic systems. However, the importance in nitrogen removal in reservoirs, with a focus on seasonal differences of conditions such as macrophyte beds and environmental factors, is less well understood. This study examined sediment denitrification rate (Dn), and their potential controlling factors were determined in both macrophyte beds and deeper waters in the subtropical reservoir. The mean Dn in the reservoir annually was 18.0 ± 6.3 (mean ± S.E.) mmol N m-2 d-1, with significant seasonal variation (p < 0.01), i.e. 43.2 ± 12.8, 6.7 ± 6.3, and 4.0 ± 2.2 mmol N m-2 d-1 in winter, spring and summer respectively. There were no statistical differences in Dn between shallow waters with macrophyte beds and deeper waters without macrophyte beds, although macrophyte beds had higher denitrification rates in summer. The Dn rates were significantly correlated with temperature, conductivity, dissolved oxygen, pH, nitrate-nitrogen concentration (NO3--N) (p < 0.01) and turbidity (p < 0.05). Linear regression models demonstrated environmental variables explained between 36% and 76% of the variation in Dn. The correlation with NO3--N concentrations suggests that it may be a limited factor for Dn. Annual nitrogen removal of the reservoir by a combination of sediment and water denitrification was totally estimated to be 370 t N with an annual removal efficiency of approximately 11%. Nitrogen removal was much higher in winter than other seasons, with about 305 t N removed, accounting for 12% of the total nitrogen inputs. Therefore, denitrification appears to play a minor role throughout much of the year, but in winter months when nitrate accumulates, it may play a more major role.


Asunto(s)
Desnitrificación , Nitratos , Monitoreo del Ambiente , Sedimentos Geológicos , Nitratos/análisis , Nitrógeno/análisis
10.
Water Res ; 212: 118127, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121420

RESUMEN

Cyanobacteria harmful blooms can represent a major risk for public health due to potential release of toxins and other noxious compounds in the water. A continuous and high-resolution monitoring of the cyanobacteria population is required due to their rapid dynamics, which has been increasingly done using in-situ fluorescence of phycocyanin (f-PC) and chlorophyll a (f-Chl a). Appropriate in-situ fluorometers calibration is essential because f-PC and f-Chl a are affected by biotic and abiotic factors, including species composition. Measurement of f-PC and f-Chl a in mixed species assemblages during different growth phases - representative of most field conditions - has received little attention. We hypothesized that f-PC and f-Chl a of mixed assemblages of cyanobacteria may be accurately estimated if taxa composition and fluorescence characteristics are known. We also hypothesized that species with different morphologies would have different fluorescence per unit cell and biomass. We tested these hypotheses in a controlled culture experiment in which photosynthetic pigment fluorescence, chemical pigment extraction, optical density and microscopic enumeration of four common cyanobacteria species (Aphanocapsa sp, Microcystis aeruginosa, Dolichospermum circinale and Raphidiopsis raciborskii) were quantified. Both monocultures and mixed cultures were monitored from exponential to late stationary growth phases. The sum of fluorescence of individual species calculated for mixed samples was not significantly different than measured fluorescence of mixed cultures. Estimated and measured f-PC and f-Chl a of mixed cultures had higher correlations and smaller absolute median errors when estimations were based on fluorescence per biomass instead of fluorescence per cell. Largest errors were overestimations of measured fluorescence for species with different morphologies. Fluorescence per cell was significantly different among most species, while fluorescence per unit biomass was not, indicating that conversion of fluorescence to biomass reduces species-specific bias. This study presents new information on the effect of species composition on cyanobacteria fluorescence. Best practices of deployment and operation of fluorometers, and data-driven models supporting in-situ fluorometers calibration are discussed as suitable solutions to minimize taxa-specific bias in fluorescence estimates.


Asunto(s)
Cianobacterias , Ficocianina , Tamaño de la Célula , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Fluorescencia
11.
Mar Environ Res ; 173: 105511, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34749254

RESUMEN

Trace element accumulation pathways are important in many ecological and toxicological studies on aquatic organisms, yet these pathways are often poorly understood. To study the influence of diet and environment on the trace element composition of species within estuarine food webs, we performed a community level assessment of 28 trace elements (including major and minor elements) in common fish and prawn taxa across four estuaries, and in fish, prawn, and other invertebrate taxa within a single estuary. Despite sediment substrates from the four estuaries having distinctly different geochemical compositions, food web samples showed no separation by estuary, but clear separation by taxa. Grouping of taxa by trace elements was related to feeding ecology, with pelagic taxa separated from benthic taxa, and mixed feeding by generalist taxa. Arsenic and selenium were more concentrated in benthic fish, while aluminium, barium, copper, iron, manganese, vanadium, and zinc were more concentrated in pelagic fish. Trophic level did not appear to influence trace element composition. Previous laboratory studies have shown that food sources influence trace element concentrations in marine taxa and this study confirms that this also occurs in natural food webs. These results improve our understanding of the dominant importance of diet and physiology in controlling the trace element composition of species within estuarine food webs.


Asunto(s)
Selenio , Oligoelementos , Animales , Estuarios , Peces , Cadena Alimentaria
12.
Environ Microbiol ; 23(11): 6503-6519, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34327792

RESUMEN

Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%-90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.


Asunto(s)
Euryarchaeota , Microcystis , Archaea/genética , Euryarchaeota/genética , Eutrofización , Lagos/microbiología , Metano , Microcystis/genética , ARN Ribosómico 16S/genética
13.
Rapid Commun Mass Spectrom ; 35(16): e9140, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34097783

RESUMEN

RATIONALE: The coupled analysis of δ13 C and δ15 N stable isotope values of blubber and skin biopsy samples is widely used to study the diet of free-ranging cetaceans. Differences in the lipid content of these tissues can affect isotopic variability because lipids are depleted in 13 C, reducing the bulk tissue 13 C/12 C. This variability in carbon isotope values can be accounted for either by chemically extracting lipids from the tissue or by using mathematical lipid normalisation models. METHODS: This study examines (a) the effects of chemical lipid extraction on δ13 C and δ15 N values in blubber and skin of southern hemisphere humpback whales, (b) whether chemical lipid extraction is more favourable than mathematical lipid correction and (c) which of the two tissues is more appropriate for dietary studies. Strategic comparisons were made between chemical lipid extraction and mathematical lipid correction and between blubber and skin tissue δ13 C and δ15 N values, as well as C:N ratios. Six existing mathematical normalisation models were tested for their efficacy in estimating lipid-free δ13 C for skin. RESULTS: Both δ13 C and δ15 N values of lipid-extracted skin (δ13 C: -25.57‰, δ15 N: 6.83‰) were significantly higher than those of bulk skin (δ13 C: -26.97‰, δ15 N: 6.15‰). Five of the six tested lipid normalisation models had small error terms for predicting lipid-free δ13 C values. The average C:N ratio of lipid-extracted skin was within the lipid-free range reported in other studies, whereas the average C:N ratio of blubber was higher than previously reported. CONCLUSIONS: These results highlight the need to account for lipids when analysing δ13 C and δ15 N values from the same sample. For optimised dietary assessments using parallel isotope analysis from a single sample, we recommend the use of unextracted skin tissue. δ15 N values should be obtained from unextracted skin, whereas δ13 C values may be adequately lipid corrected by a mathematical correction.


Asunto(s)
Tejido Adiposo/química , Yubarta/fisiología , Marcaje Isotópico/métodos , Lípidos , Piel/química , Animales , Isótopos de Carbono/análisis , Lípidos/análisis , Lípidos/aislamiento & purificación , Espectrometría de Masas , Isótopos de Nitrógeno/análisis
14.
Mar Pollut Bull ; 169: 112565, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34119963

RESUMEN

Estuaries in the tropical Gulf of Carpentaria (GOC) in Australia are under increasing pressure from catchment water development, potentially affecting productivity. We examined the potential effect of changes in freshwater inputs on the primary productivity of three estuaries (Flinders, Gilbert and Mitchell Rivers). The addition of nutrients stimulated mudflat primary production in all estuaries at multiple sampling times, suggesting chronic nutrient limitation. All three estuaries were productive with the Flinders estuary being the most productive of the three estuaries, compared to the Gilbert and Mitchell estuaries. This is despite the fact that the Flinders estuary has the shortest period of freshwater flow and more variable flows from year-to-year compared with the other estuaries. This makes the Flinders highly vulnerable to excessive water development. This study suggests that water extraction which significantly reduces freshwater inputs and associated nutrients has the potential to impact on productivity within these estuaries.


Asunto(s)
Estuarios , Agua Dulce , Australia , Nutrientes , Ríos
15.
Environ Pollut ; 283: 117232, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34034019

RESUMEN

Restoring woody vegetation to riparian zones helps to protect waterways from excessive sediment and nutrient inputs. However, the associated leaf litter can be a major source of dissolved organic matter (DOM) leached into surface waters. DOM can lead to the formation of disinfection by-products (DBPs) during drinking water treatment. This study investigated the DBPs formed during chlorination of DOM leached from leaf litter and assessed the potential toxicity of DBPs generated. We compared the leachate of two native Australian riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis, and a reservoir water source from a catchment dominated by Eucalyptus species. Leachates were diluted to dissolved organic carbon concentrations equivalent to the reservoir (~9 mg L-1). E. tereticornis leachates produced more trihalomethanes (THMs), haloacetic acids (HAAs), and haloketones after chlorination, while C. cunninghamiana produced more chloral hydrate and haloacetonitriles. Leachate from both species produced less THMs and more HAAs per mole of carbon than reservoir water. This may be because reservoir water had more aromatic, humic characteristics while leaf leachates had relatively more protein-like components. Using in vitro bioassays to test the mixture effects of all chemicals, chlorinated E. tereticornis leachate induced oxidative stress in HepG2 liver cells and bacterial toxicity more frequently and at lower concentrations than C. cunninghamiana and reservoir water. Overall, this study has shown that the DOM leached from litter of these species has the potential to generate DBPs and each species has a unique DBP profile with differing bioassay responses. E. tereticornis may pose a relatively greater risk to drinking water than C. cunninghamiana as it showed greater toxicity in bioassays. This implies tree species should be considered when planning riparian zones to ensure the benefits of vegetation to waterways are not offset by unintended increased DBP production and associated toxicity following chlorination at downstream drinking water intakes.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Australia , Desinfección , Halogenación , Trihalometanos/análisis , Trihalometanos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Sci Total Environ ; 749: 141482, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32827821

RESUMEN

There is emerging evidence for the phytotoxicity of terrestrial dissolved organic matter (DOM), however its sources, transformations and ecological effects in aquatic ecosystems are poorly understood. DOM characterization by Nuclear Magnetic Resonance (NMR) spectroscopy has typically involved solid-state techniques, but poor resolution has often precluded identification of individual components. This study is the first to directly identify individual phytotoxic components using a novel combined approach of preparative HPLC fractionation of DOM (obtained from leaves of two common riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis). This was followed by chemical characterization of fractions, using one-dimensional (1D) and two-dimensional (2D) solution-state 1H NMR analyses. Additionally, the phytotoxic effect of the fractions was determined using cultures of the cyanobacteria Raphidiopsis (Cylindrospermopsis) raciborskii. The amino acid, proline, from Casuarina leachate was identified as phytotoxic, while for Eucalyptus leachate, it was gallic acid and polyphenols. These phytotoxicants remained in the leachates when they were incubated in sunlight or the dark conditions over 5 days. Our study identifies phytotoxic compounds with the potential to affect algal species composition, and potentially control nuisance R. raciborskii blooms.


Asunto(s)
Cianobacterias , Ecosistema , Espectroscopía de Resonancia Magnética , Luz Solar , Árboles
17.
Sci Total Environ ; 739: 139931, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32544687

RESUMEN

Aquatic ecosystems are used for extensive rice-shrimp culture where the available water alternates seasonally between fresh and saline. Poor water quality has been implicated as a risk factor for shrimp survival; however, links between shrimp, water quality and their main food source, the natural aquatic biota inhabiting these ponds, are less well understood. We examined the aquatic biota and water quality of three ponds over an entire year in the Mekong Delta, Vietnam, where the growing season for the marine shrimp Penaeus monodon has been extended into the wet season, when waters freshen. The survival (30-41%) and total areal biomass (350-531 kg ha-1) of shrimp was constrained by poor water quality, with water temperatures, salinity and dissolved oxygen concentrations falling outside known optimal ranges for several weeks. Declines in dissolved oxygen concentration were matched by declines in both shrimp growth rates and lipid content, the latter being indicative of nutritional condition. Furthermore, as the dry season transitioned into the wet, shifts in the taxonomic composition of phytoplankton and zooplankton were accompanied by declines in the biomass of benthic algae, an important basal food source in these systems. Densities of the benthic invertebrates directly consumed by shrimp also varied substantially throughout the year. Overall, our findings suggest that the survival, condition and growth of shrimp in extensive rice-shrimp ecosystems will be constrained when poor water quality and alternating high and low salinity negatively affect the physiology, growth and composition of the natural aquatic biota. Changes in management practices, such as restricting shrimp inhabiting ponds to the dry season, may help to address these issues and improve the sustainable productivity and overall condition of these important aquatic ecosystems.


Asunto(s)
Ecosistema , Oryza , Animales , Alimentos Marinos , Vietnam , Calidad del Agua
18.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407469

RESUMEN

Several cyanobacteria, including diazotrophic Raphidiopsis raciborskii, can form harmful blooms when dissolved inorganic phosphorus concentrations are very low. We hypothesized that R. raciborskii strains would vary in phosphorus (P) allocations to cell growth and storage, providing resilience of populations to continuously low or variable P supplies. We tested this hypothesis using six toxic strains (producing cylindrospermopsins) isolated from a field population using batch monocultures with and without P and dissolved inorganic nitrogen (DIN). Treatments replete with DIN, irrespective of P addition, had similar exponential growth rates for individual strains. P storage capacity varied 4-fold among strains and was significantly higher in DIN-free treatments than in replete treatments. P was stored by all R. raciborskii strains, in preference to allocation to increase growth rates. P stores decreased with increased growth rate across strains, but weeere not related to the time to P starvation in P-free treatments. The storage capacity of R. raciborskii, combined with strategies to efficiently uptake P, means that P controls may not control R. raciborskii populations in the short term. Intra-population strain variation in P storage capacity will need to be reflected in process-based models to predict blooms of R. raciborskii and other cyanobacteria adapted to low-P conditions.


Asunto(s)
Cianobacterias , Cylindrospermopsis , Cianobacterias/genética , Cylindrospermopsis/genética , Agua Dulce , Nitrógeno , Fósforo
19.
Harmful Algae ; 92: 101732, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32113600

RESUMEN

Predicting algal population dynamics using models informed by experimental data has been used as a strategy to inform the management and control of harmful cyanobacterial blooms. We selected toxic bloom-forming species Microcystis spp. and Raphidiopsis raciborskii (basionym Cylindrospermopsis raciborskii) for further examination as they dominate in 78 % and 17 %, respectively, of freshwater cyanobacterial blooms (cyanoHABs) reported globally over the past 30 years. Field measurements of cyanoHABs are typically based on biomass accumulation, but laboratory experiments typically measure growth rates, which are an important variable in cyanoHAB models. Our objective was to determine the usefulness of laboratory studies of these cyanoHAB growth rates for simulating the species dominance at a global scale. We synthesized growth responses of M. aeruginosa and R. raciborskii from 20 and 16 culture studies, respectively, to predict growth rates as a function of two environmental variables, light and temperature. Predicted growth rates of R. raciborskii exceeded those of M. aeruginosa at temperatures ≳ 25 °C and light intensities ≳ 150 µmol photons m-2 s-1. Field observations of biomass accumulation, however, show that M. aeruginosa dominates over R. raciborskii, irrespective of climatic zones. The mismatch between biomass accumulation measured in the field, and what is predicted from growth rate measured in the laboratory, hinders effective use of culture studies to predict formation of cyanoHABs in the natural environment. The usefulness of growth rates measured may therefore be limited, and field experiments should instead be designed to examine key physiological attributes such as colony formation, buoyancy regulation and photoadaptation. Improving prediction of cyanoHABs in a changing climate requires a more effective integration of field and laboratory approaches, and an explicit consideration of strain-level variability.


Asunto(s)
Cianobacterias , Cylindrospermopsis , Microcystis , Agua Dulce
20.
Toxicon ; 176: 47-54, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32103795

RESUMEN

Cyanobacteria species are sensitive to many plant allelochemicals, such as pyrogallol. However, little attention has been paid to the relative effects of these xenobiotics on co-occurring toxigenic and non-toxigenic cyanobacterial strains, despite their co-existence in blooms. Hence, the responses of one toxigenic (TS2) and two non-toxigenic (NS1, NS2) Microcystis aeruginosa strains to pyrogallol were tested under three conditions: mono-culture and co-cultured either directly or separately by dialysis membrane. The study showed that the inhibitory effects of pyrogallol on the growth and photosynthetic yield (Fv/Fm) of either toxigenic or non-toxigenic M. aeruginosa strains were lower in direct and dialysis co-culture conditions than those in mono-culture conditions. This result indicated that chemical-mediated reciprocal effects occur between the co-existing toxigenic and non-toxigenic strains. The toxigenic M. aeruginosa strain was more sensitive to pyrogallol than the non-toxigenic strains in both mono- and co-culture systems, though whether this outcome is due to the former's toxigenic status is unclear. Intracellular microcystin-LR (MC-LR) concentrations of the toxigenic strain decreased after pyrogallol addition in both mono- and co-culture systems, whereas extracellular MC-LR concentrations increased. This finding may reflect the cell damage of M. aeruginosa because of the pyrogallol. At the same initial number of cells, the extracellular MC-LR concentration released from the same amount of TS2 cells in mono-culture was slightly higher than that in dialysis co-culture conditions. Overall, this study shows that plant allelochemicals may have the potential to reduce bloom toxicity by reducing the proportion of toxigenic cyanobacterial strains, and the effects of co-existing strains must be considered when assessing the effects of plant allelochemicals on target strains.


Asunto(s)
Microcistinas/toxicidad , Microcystis/efectos de los fármacos , Pirogalol/toxicidad , Cianobacterias , Toxinas Marinas , Microcystis/fisiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...