Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(15): 150401, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929214

RESUMEN

We show that for any finite-dimensional quantum systems the conserved quantities can be characterized by their robustness to small perturbations: for fragile symmetries, small perturbations can lead to large deviations over long times, while for robust symmetries, their expectation values remain close to their initial values for all times. This is in analogy with the celebrated Kolmogorov-Arnold-Moser theorem in classical mechanics. To prove this result, we introduce a resummation of a perturbation series, which generalizes the Hamiltonian of the quantum Zeno dynamics.

2.
Phys Rev Lett ; 125(19): 190403, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216597

RESUMEN

Entangled resources enable quantum sensing that achieves Heisenberg scaling, a quadratic improvement on the standard quantum limit, but preparing large N spin entangled states is challenging in the presence of decoherence. We present a quantum control strategy using highly nonlinear geometric phase gates which can be used for generic state or unitary synthesis on the Dicke subspace with O(N) or O(N^{2}) gates, respectively. The method uses a dispersive coupling of the spins to a common bosonic mode and does not require addressability, special detunings, or interactions between the spins. By using amplitude amplification our control sequence for preparing states ideal for metrology can be significantly simplified to O(N^{5/4}) geometric phase gates with action angles O(1/N) that are more robust to mode decay. The geometrically closed path of the control operations ensures the gates are insensitive to the initial state of the mode and the sequence has built-in dynamical decoupling providing resilience to dephasing errors.

3.
Phys Rev Lett ; 119(3): 030402, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28777617

RESUMEN

We provide a protocol for Hamiltonian parameter estimation which relies only on the Zeeman effect. No time-dependent quantities need to be measured; it fully suffices to observe spectral shifts induced by fields applied to local "markers." We demonstrate the idea with a simple tight-binding Hamiltonian and numerically show stability with respect to Gaussian noise on the spectral measurements. Then we generalize the result to show applicability to a wide range of systems, including quantum spin chains, networks of qubits, and coupled harmonic oscillators, and suggest potential experimental implementations.

4.
Nat Comput ; 14(3): 485-490, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300713

RESUMEN

We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

5.
Nat Commun ; 5: 5173, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25300692

RESUMEN

The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

6.
Phys Rev Lett ; 108(15): 150501, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587236

RESUMEN

Controllability--the possibility of performing any target dynamics by applying a set of available operations--is a fundamental requirement for the practical use of any physical system. For finite-dimensional systems, such as spin systems, precise criteria to establish controllability, such as the so-called rank criterion, are well known. However, most physical systems require a description in terms of an infinite-dimensional Hilbert space whose controllability properties are poorly understood. Here, we investigate infinite-dimensional bosonic quantum systems--encompassing quantum light, ensembles of bosonic atoms, motional degrees of freedom of ions, and nanomechanical oscillators--governed by quadratic Hamiltonians (such that their evolution is analogous to coupled harmonic oscillators). After having highlighted the intimate connection between controllability and recurrence in the Hilbert space, we prove that, for coupled oscillators, a simple extra condition has to be fulfilled to extend the rank criterion to infinite-dimensional quadratic systems. Further, we present a useful application of our finding, by proving indirect controllability of a chain of harmonic oscillators.

7.
Phys Rev Lett ; 108(8): 080502, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22463508

RESUMEN

The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.

8.
Phys Rev Lett ; 99(10): 100501, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17930379

RESUMEN

We demonstrate a scheme for controlling a large quantum system by acting on a small subsystem only. The local control is mediated to the larger system by some fixed coupling Hamiltonian. The scheme allows us to transfer arbitrary and unknown quantum states from a memory to the large system ("upload access") as well as the inverse ("download access"). We study the sufficient conditions of the coupling Hamiltonian and give lower bounds on the fidelities for downloading and uploading.

9.
Phys Rev Lett ; 96(3): 030501, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16486674

RESUMEN

We demonstrate that the quantum communication between two parties can be significantly improved if the receiver is allowed to store the received signals in a quantum memory before decoding them. In the limit of an infinite memory, the transfer is perfect. We prove that this scheme allows the transfer of arbitrary multipartite states along Heisenberg chains of spin-1/2 particles with random coupling strengths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...