RESUMEN
Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE: CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.
Asunto(s)
Quinasa Idelta de la Caseína , Mieloma Múltiple , Humanos , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/metabolismo , Mieloma Múltiple/genética , Supervivencia Celular , Fosforilación , Progresión de la EnfermedadRESUMEN
The in-clinic phosphatidylinositol 3-kinase (PI3K) inhibitors idelalisib (CAL-101) and duvelisib (IPI-145) have demonstrated high rates of response and progression-free survival in clinical trials of B-cell malignancies, such as chronic lymphocytic leukemia (CLL). However, a high incidence of adverse events has led to frequent discontinuations, limiting the clinical development of these inhibitors. By contrast, the dual PI3Kδ/casein kinase-1-ε (CK1ε) inhibitor umbralisib (TGR-1202) also shows high rates of response in clinical trials but has an improved safety profile with fewer severe adverse events. Toxicities typical of this class of PI3K inhibitors are largely thought to be immune mediated, but they are poorly characterized. Here, we report the effects of idelalisib, duvelisib, and umbralisib on regulatory T cells (Tregs) on normal human T cells, T cells from CLL patients, and T cells in an Eµ-TCL1 adoptive transfer mouse CLL model. Ex vivo studies revealed differential effects of these PI3K inhibitors; only umbralisib treatment sustained normal and CLL-associated FoxP3+ human Tregs. Further, although all 3 inhibitors exhibit antitumor efficacy in the Eµ-TCL1 CLL model, idelalisib- or duvelisib-treated mice displayed increased immune-mediated toxicities, impaired function, and reduced numbers of Tregs, whereas Treg number and function were preserved in umbralisib-treated CLL-bearing mice. Finally, our studies demonstrate that inhibition of CK1ε can improve CLL Treg number and function. Interestingly, CK1ε inhibition mitigated impairment of CLL Tregs by PI3K inhibitors in combination treatment. These results suggest that the improved safety profile of umbralisib is due to its role as a dual PI3Kδ/CK1ε inhibitor that preserves Treg number and function.
Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Ratones , Fosfatidilinositol 3-Quinasas/uso terapéuticoRESUMEN
Bone metastatic prostate cancer provokes extensive osteogenesis by driving the recruitment and osteoblastic differentiation of mesenchymal stromal cells (MSCs). The resulting lesions greatly contribute to patient morbidity and mortality, underscoring the need for defining how prostate metastases subvert the MSC-osteoblast differentiation program. To gain insights into this process we profiled the effects of co-culture of primary MSCs with validated bone metastatic prostate cancer cell line models. These analyses revealed a cast of shared differentially induced genes in MSC, including betaglycan, a co-receptor for TGFß. Betaglycan has not been studied in the context of bone metastatic disease previously. Here we report that loss of betaglycan in MSC is sufficient to augment TGFß signaling, proliferation and migration, and completely blocks the MSC-osteoblast differentiation program. Further, betaglycan was revealed as necessary for prostate cancer-induced osteogenesis in vivo. Mechanistically, gene expression analysis revealed betaglycan controls the expression of a large repertoire of genes in MSCs, and that betaglycan loss provokes >60-fold increase in the expression of Wnt5a that plays important roles in stemness. In accord with the increased Wnt5a levels, there was a marked induction of canonical Wnt signaling in betaglycan ablated MSCs, and the addition of recombinant Wnt5a to MSCs was sufficient to impair osteogenic differentiation. Finally, the addition of Wnt5a neutralizing antibody was sufficient to induce the expression of osteogenic genes in betaglycan-ablated MSCs. Collectively, these findings suggest a betaglycan-Wnt5a circuit represents an attractive vulnerability to ameliorate prostate cancer-induced osteogenesis.
Asunto(s)
Células Madre Mesenquimatosas/patología , Osteoblastos/patología , Osteogénesis , Neoplasias de la Próstata/patología , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Humanos , Masculino , Proteoglicanos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Proteína Wnt-5a/metabolismoRESUMEN
BACKGROUND: The Src tyrosine kinase substrate and adaptor protein Tks5 had previously been implicated in the invasive phenotype of normal and transformed cell types via regulation of cytoskeletal structures called podosomes/invadopodia. The role of Src-Tks5 signaling in invasive prostate cancer, however, had not been previously evaluated. METHODS: We measured the relative expression of Tks5 in normal (n = 20) and cancerous (n = 184, from 92 patients) prostate tissue specimens by immunohistochemistry using a commercially available tumor microarray. We also manipulated the expression and activity of wild-type and mutant Src and Tks5 constructs in the LNCaP and PC-3 prostate cancer cell lines in order to ascertain the role of Src-Tks5 signaling in invadopodia development, matrix-remodeling activity, motility, and invasion. RESULTS: Our studies demonstrated that Src was activated and Tks5 upregulated in high Gleason score prostate tumor specimens and in invasive prostate cancer cell lines. Remarkably, overexpression of Tks5 in LNCaP cells was sufficient to induce invadopodia formation and associated matrix degradation. This Tks5-dependent increase in invasive behavior further depended on Src tyrosine kinase activity and the phosphorylation of Tks5 at tyrosine residues 557 and 619. In PC-3 cells we demonstrated that Tks5 phosphorylation at these sites was necessary and sufficient for invadopodia-associated matrix degradation and invasion. CONCLUSIONS: Our results suggest a general role for Src-Tks5 signaling in prostate tumor progression and the utility of Tks5 as a marker protein for the staging of this disease.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Adenocarcinoma/patología , Movimiento Celular/fisiología , Citoesqueleto/fisiología , Neoplasias de la Próstata/patología , Familia-src Quinasas/fisiología , Adenocarcinoma/fisiopatología , Biomarcadores de Tumor/fisiología , Estudios de Casos y Controles , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Inmunohistoquímica , Masculino , Fosforilación/fisiología , Neoplasias de la Próstata/fisiopatología , Transducción de Señal/fisiologíaRESUMEN
Tks5 is a Src substrate and adaptor protein previously recognized for its regulation of cancer cell invasion through modulation of specialized adhesion structures called podosomes/invadopodia. Here we show for the first time that Tks5 localizes to the podosomes of primary macrophages, and that Tks5 protein levels increase concurrently with podosome deposition during the differentiation of monocytes into macrophages. Similar results are reported for model THP-1 cells, which differentiate into macrophages and form proteolytically active podosomes in response to a PKC signaling agonist (PMA) and with sensitivity to a PKC inhibitor (bisindolylmaleimide). Genetic manipulation of Tks5 expression (silencing and overexpression) in stable THP-1 cell lines does not independently alter this macrophage differentiation process. Nor do these cells lose the ability to focalize F-actin and its accessory proteins into podosome-like structures following PMA treatment. However, Tks5 directly controls podosome-associated gelatin degradation and invasion through collective changes in adhesion, chemotaxis, and the expression/proteolytic activity of MMP9. The Src family kinase-dependent phosphorylation of Tks5 is also implicated in the regulation of THP-1 macrophage invasive behavior. These results therefore define a previously unappreciated function of Tks5 signaling specific to the functional attributes of the macrophage podosome in adhesion, motility, and extracellular matrix-remodeling.