RESUMEN
This study evaluated the effects of topically applied hydrogels (HG) containing nanoencapsulated indol-3-carbinol (I3C) and its free form in a rat model of skin wounds. Formulations were topically applied twice a day for five days to the wounds. On days 1, 3, and 6, the wound area was measured to verify the % of regression. On the sixth day, the animals were euthanized for the analysis of the inflammatory and oxidative profile in wounds. The nanocapsules (NC) exhibited physicochemical characteristics compatible with this kind of suspension. After five hours of exposure to ultraviolet C, more than 78% of I3C content in the suspensions was still observed. The NC-I3C did not modify the physicochemical characteristics of HG when compared to the HG base. In the in vivo study, an increase in the size of the wound was observed on the 3rd experimental day, which was lower in the treated groups (mainly in HG-NC-I3C) compared to the control. On the 6th day, HG-I3C, HG-NC-B, and HG-NC-I3C showed lower regression of the wound compared to the control. Additionally, HG-NC-I3C exhibited an anti-inflammatory effect (as observed by decreased levels of interleukin-1B and myeloperoxidase), reduced oxidative damage (by decreased reactive species, lipid peroxidation, and protein carbonylation levels), and increased antioxidant defense (by improved catalase activity and vitamin C levels) compared to the control. The current study showed more satisfactory results in the HG-NC-I3C group than in the free form of I3C in decreasing acute inflammation and oxidative damage in wounds.
I3C nanocapsules exhibited characteristics compatible with this kind of suspension;On 3rd day, I3C nanocapsules prevented the increase of wound area;I3C nanocapsules decreased oxidative damage in wound tissue;Inflammatory proteins were decreased in I3C nanocapsules treated group.
Asunto(s)
Indoles , Inflamación , Nanocápsulas , Estrés Oxidativo , Piel , Cicatrización de Heridas , Animales , Indoles/farmacología , Ratas , Cicatrización de Heridas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Nanocápsulas/química , Masculino , Ratas Wistar , Antioxidantes/farmacologíaRESUMEN
In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.
Asunto(s)
Anfetamina , Cannabidiol , Anfetamina/farmacología , Animales , Cannabidiol/farmacología , Dopamina , Endocannabinoides/farmacología , Ratas , RecurrenciaRESUMEN
Aims: The present study assessed the toxicity of a novel calcium silicate-based root canal sealer (Bio-C Sealer) in comparison to Endosequence BC Sealer and AH Plus through a lethality assay involving brine shrimp (Artemia salina). Methods: Brine shrimp cysts were incubated for 24 h for the hatching of the larvae, which were then exposed to different concentrations (2.5, 5, 10, 20, 40, 80, and 100 µg/mL) of the test endodontic sealers for 24 h, followed by the determination of the survival rate. Statistical Analysis Used: One-way repeated-measures ANOVA and the Newman-Keuls post hoc test were used to compare the different materials as well as different concentrations of the same material. Dunnett's test was used to compare the different concentrations and different sealers to the control. The lethal concentration of each endodontic sealer necessary to kill 50% of the brine shrimp larvae (LC50) was also determined. Results: The toxicity of Bio-C (10, 20, 40, 80, and 100 µg/mL) and Endosequence BC Sealer (20, 80, and 100 µg/mL) was lower than that of AH Plus. No significant difference was found between Bio-C and Endosequence BC Sealer or among the different intragroup concentrations of these sealers. In the AH Plus group, concentrations ≥5.0 µg/mL exhibited greater toxicity compared to the concentration of 2.5 µg/mL and the control. AH Plus had the lowest LC50 (59.95 µg/mL), whereas Bio-C and Endosequence BC Sealer had LC50 values >200 µg/mL. Conclusions: Bio-C Sealer proved to be less toxic than AH Plus and exhibited similar toxicity to that of Endosequence BC Sealer.
RESUMEN
INTRODUCTION: Amphetamine (AMPH) abuse results in neurobehavioral alterations related to the reward circuit. The hippocampus plays a role in cognition, reward, and drug addiction. There are no pharmacological approaches to prevent AMPH relapse. Physical exercise has been studied as a non-pharmacological promising influence to attenuate reward symptoms related to addictive drugs. OBJECTIVE: This study aimed to compare the effects of non-weight-loaded and weight-loaded physical exercise on behavioral (relapse, memory and anxiety) and hippocampal molecular parameters associated with AMPH addiction in Wistar rats. METHODS: Male rats were subjected to the AMPH-Conditioned Place Preference (CPP) paradigm. After 8-conditioning days, they were subjected to swimming physical exercise protocol (without or with weight-load). Behavioral evaluations were performed to assess the influence of both exercise protocols in addiction parameters, including relapse after AMPH reconditioning, working memory, locomotor activity, and anxiety-like symptoms. Subsequently, protein levels of Brain-Derived Neurotrophic Factor (BDNF) and pro-BDNF ex-vivo assays were carried out in samples of the hippocampus of the animals. RESULTS: AMPH relapse and anxiety-like behaviors were reduced only in rats subjected to non-weight-loaded exercise. Hippocampal BDNF and pro-BDNF immunoreactivity were increased in non-weight-loaded exercise rats. Behavioral and molecular analyses were not modified in rats subjected to weight-loaded exercise. CONCLUSION: These findings demonstrate that non-weight-loaded exercise was more effective against relapse and anxiety-like behavior induced by AMPH. Non-weight-loaded exercise upregulated the hippocampal immunocontent levels in rats.
Asunto(s)
Trastornos Relacionados con Anfetaminas , Factor Neurotrófico Derivado del Encéfalo , Anfetamina/farmacología , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar , RecurrenciaRESUMEN
In recent years, interesterified fat (IF) has largely replaced trans fat in industrialized food. Studies of our research group showed that IF consumption may not be safe for central nervous system (CNS) functions. Our current aim was to evaluate IF maternal consumption before conception on cognitive performance of adult rat offspring. Female Wistar rats were fed with standard chow plus 20% soybean and fish oil mix (control group) or plus 20% IF from weaning until adulthood (before mating), when the diets were replaced by standard chow only. Following the gestation and pups' development, locomotion and memory performance followed by neurotrophin immunocontent and fatty acids (FA) profile in the hippocampus of the adulthood male offspring were quantified. Maternal IF consumption before conception decreased hippocampal palmitoleic acid incorporation, proBDNF and BDNF levels, decreasing both exploratory activity and memory performance in adult offspring. Considering that, the adult male offspring did not consume IF directly, further studies are needed to understand the molecular mechanisms and if the IF maternal preconception consumption could induce the epigenetic changes observed here. Our outcomes reinforce an immediate necessity to monitor and / or question the replacement of trans fat by IF with further studies involving CNS functions.
Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Ácidos Grasos trans , Animales , Ácidos Grasos/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Aprendizaje , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Wistar , Ácidos Grasos trans/metabolismoRESUMEN
Ferulic acid (FA) is a phenolic compound that has antioxidant, anti-inflammatory and anticarcinogenic properties besides presenting cytoprotective activity. It has limited oral bioavailability what is a challenge to its therapeutic application. In this way, this investigation aimed to develop FA-loaded nanocapsule suspensions (NC-FA) prepared with ethylcellulose and evaluate their in vitro release profile, mucoadhesion and irritation potential; scavenging capacity, cytotoxicity, cytoprotection and genoprotection against hydrogen peroxide-induced damage in hMNC (human Mononucleated Cells) culture. The nanocapsules presented physicochemical characteristics compatible with colloidal systems (NC-FA: 112 ± 3 nm; NC-B (without FA): 107 ± 3 nm; PdI < 0.2; Span<2.0 and negative zeta potential). In addition, the nanoparticulate system promoted the FA controlled release, increasing the half-life twice through the in vitro dialysis method. NC-FA and NC-B were able to interact with mucin, which is an indicative of mucoadhesive properties and the association of FA with nanocapsules showed decreased irritation by HET-CAM method. Besides, the NC-FA did not present cytotoxicity in hMNC and improved the ATBS radical scavenging capacity. Besides, it prevented, treated and reversed oxidative conditions in a H2O2-induced model in hMNC. Thus, this nanocarrier formulation is promising to perform more preclinical investigations focusing on diseases involving oxidative mechanisms.
Asunto(s)
Antioxidantes/administración & dosificación , Ácidos Cumáricos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanocápsulas/química , Animales , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Células Cultivadas , Celulosa/análogos & derivados , Embrión de Pollo , Ácidos Cumáricos/farmacocinética , Ácidos Cumáricos/farmacología , Humanos , Peróxido de Hidrógeno/toxicidad , Irritantes , Linfocitos , Mucinas , Nanocápsulas/efectos adversosRESUMEN
Amphetamine (AMPH) is an addictive psychostimulant highly used worldwide and its consumption is related to neurotoxic effects. Currently, there is no pharmacotherapy approved for treating AMPH or other psychostimulant drug addiction. Different studies have shown promising properties of cannabidiol (CBD) for treating many neurological and psychiatric diseases, and recently, CBD is being considered a potential strategy for the treatment of drug addiction disorders. Thus, we investigated possible CBD beneficial effects on relapse symptoms following AMPH re-exposure considering drug relapse is the most difficult clinical factor to control during addiction treatment. Rats received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the conditioned place preference (CPP) paradigm (8 days), when each experimental group was re-assigned to receive CBD at two different doses (5 or 10 mg/kg, i.p) or control, for 5 days. Subsequently, animals were re-exposed to AMPH-CPP (4 mg/kg, i.p.) for 3 additional days to assess relapse behavior. Besides locomotor and anxiety-like behaviors, dopaminergic molecular parameters were quantified in both prefrontal cortex and ventral striatum. Regarding molecular levels, CBD modulated at basal levels the dopaminergic targets (D1R, D2R, DAT, and TH) in the assessed brain areas, preventing AMPH relapse and decreasing anxiety-like behavior per se and in AMPH-CPP animals. The current findings give evidence about CBD-induced AMPH-relapse prevention, which may be linked to dopaminergic mesocorticolimbic system modulation. Although future and clinical studies are needed, our outcomes show that CBD may be a useful alternative to prevent AMPH relapse.
Asunto(s)
Trastornos Relacionados con Anfetaminas , Cannabidiol , Estimulantes del Sistema Nervioso Central , Anfetamina/farmacología , Trastornos Relacionados con Anfetaminas/terapia , Animales , Encéfalo/metabolismo , Cannabidiol/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Dopamina , Ratas , Ratas Wistar , Receptores de Dopamina D2/metabolismo , RecurrenciaRESUMEN
Interesterified fat (IF) currently substitutes the hydrogenated vegetable fat (HVF) in processed foods. However, the IF consumption impact on the central nervous system (CNS) has been poorly studied. The current study investigated connections between IF chronic consumption and locomotor impairments in early life period and adulthood of rats and access brain molecular targets related to behavior changes in adulthood offspring. During pregnancy and lactation, female rats received soybean oil (SO) or IF and their male pups received the same maternal supplementation from weaning until adulthood. Pups' motor ability and locomotor activity in adulthood were evaluated. In the adult offspring striatum, dopaminergic targets, glial cell line-derived neurotrophic factor (GDFN) and lipid profile were quantified. Pups from IF supplementation group presented impaired learning concerning complex motor skill and sensorimotor behavior. The same animals showed decreased locomotion in adulthood. Moreover, IF group showed decreased immunoreactivity of all dopaminergic targets evaluated and GDNF, along with important changes in FA composition in striatum. This study shows that the brain modifications induce by IF consumption resulted in impaired motor control in pups and decreased locomotion in adult animals. Other studies about health damages induced by IF consumption may have a contribution from our current outcomes.
Asunto(s)
Encéfalo/metabolismo , Grasas de la Dieta/efectos adversos , Locomoción/fisiología , Actividad Motora/fisiología , Sistema Nervioso/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ácidos Grasos trans/efectos adversos , Factores de Edad , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Grasas de la Dieta/metabolismo , Femenino , Humanos , Fenómenos Fisiologicos Nutricionales Maternos , Modelos Animales , Fenómenos Fisiológicos del Sistema Nervioso , Embarazo , Ratas , Ácidos Grasos trans/metabolismoRESUMEN
Changes in dietary habits, including the increased consumption of processed foods, rich in trans fatty acids (TFA), have profound effects on offspring health in later life. Thus, this study aimed to assess the influence of maternal trans fat intake during pregnancy or lactation on anxiety behavior, as well as markers of inflammation, oxidative stress, and expression of glucocorticoid receptors (GR) of adult male offspring. Female Wistar rats were supplemented daily with soybean oil/fish oil (SO/FO) or hydrogenated vegetable fat (HVF) by oral gavage (3.0 g/kg body weight) during pregnancy or lactation. After weaning, male offspring received only standard diet. On the postnatal day 60, anxiety-like symptoms were assessed, the plasma was collected for the quantification of cytokines levels and the hippocampus removed for biochemical and molecular analysis. Our findings have evidenced that offspring from HVF-supplemented dams during pregnancy or lactation showed significantly greater levels of anxiety behavior. HVF supplementation increased plasma levels of proinflammatory cytokines and these levels were higher in the lactation period. In contrast, HVF supplementation decreased plasma levels of IL-10 in relation to SO/FO in both periods. Biochemical evaluations showed higher reactive species generation, protein carbonyl levels and catalase activity in offspring from HVF-supplemented dams during lactation. In addition, offspring from HVF-supplemented dams showed decreased GR expression in both supplemented periods. Together, these data indicate that consumption of TFA in different periods of development may increase anxiety-like behavior at least in part via alterations in proinflammatory and anti-inflammatory cytokine levels and GR expression in limbic brain regions.
Asunto(s)
Ansiedad/etiología , Citocinas/metabolismo , Hipocampo/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Receptores de Glucocorticoides/metabolismo , Ácidos Grasos trans/toxicidad , Animales , Conducta Animal/fisiología , Femenino , Lactancia , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas WistarRESUMEN
OBJECTIVES: Endodontic infection can cause systemic alterations. The involvement of oxidative stress (OS) and transmembrane enzymes compose the pathogenesis of various systemic diseases. However, the relation among apical periodontitis (AP), OS parameters, and Na+/K+-ATPase (NKA) pump was not reported in the literature. This study evaluated the AP influence on OS parameters and NKA activity in adult rats. METHODS: Adult male Wistar rats (sixteen weeks old) were randomly assigned to two experimental groups: control (CT group; n = 8) and AP (AP group; n = 9), which was induced in the first right mandibular molar tooth. After 21 days of AP induction, mandibles were dissected for radiographic analysis. In addition, the heart, liver, pancreas, and kidney were collected for analysis of endogenous OS parameters and NKA activity. Data were analyzed by Student's T-test. Values of p < 0.05 were considered statistically significant. RESULTS: AP presence increased reactive species (RS) generation only in the heart, while the other analyzed organs did not have this parameter modified. Heart and pancreas had a decreased endogenous antioxidant system (catalase activity and vitamin C levels), liver and kidney had an increased one. AP increased NKA activity in the heart, liver, and pancreas, but not in the kidney. CONCLUSION: The modulation of both endogenous antioxidant defense system and NKA activity in vital organs suggested that alterations in the antioxidant status and cellular electrochemical gradient may be involved in the AP pathophysiology.
Asunto(s)
Estrés Oxidativo , Periodontitis Periapical/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Antioxidantes/metabolismo , Masculino , Periodontitis Periapical/patología , Distribución Aleatoria , Ratas , Ratas WistarRESUMEN
Amphetamine (AMPH) abuse is a serious public health problem due to the high addictive potential of this drug, whose use is related to severe brain neurotoxicity and memory impairments. So far, therapies for psychostimulant addiction have had limited efficacy. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have shown beneficial influences on the prevention and treatment of several diseases that affect the central nervous system. Here, we assessed the influence of fish oil (FO), which is rich in n-3 PUFA, on withdrawal and relapse symptoms following re-exposure to AMPH. Male Wistar rats received d,l-AMPH or vehicle in the conditioned place preference (CPP) paradigm for 14 days. Then, half of each experimental group was treated with FO (3 g/kg, p.o.) for 14 days. Subsequently, animals were re-exposed to AMPH-CPP for three additional days, in order to assess relapse behavior. Our findings have evidenced that FO prevented relapse induced by AMPH reconditioning. While FO prevented AMPH-induced oxidative damages in the prefrontal cortex, molecular assays allowed us to observe that it was also able to modulate dopaminergic cascade markers (DAT, TH, VMAT-2, D1R and D2R) in the same brain area, thus preventing AMPH-induced molecular changes. To the most of our knowledge, this is the first study to show a natural alternative tool which is able to prevent psychostimulant relapse following drug withdrawal. This non-invasive and healthy nutraceutical may be considered as an adjuvant treatment in detoxification clinics.
Asunto(s)
Anfetamina/toxicidad , Ácidos Grasos Omega-3/farmacología , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Trastornos Relacionados con Anfetaminas/metabolismo , Trastornos Relacionados con Anfetaminas/psicología , Animales , Condicionamiento Clásico/efectos de los fármacos , Ácidos Grasos/metabolismo , Aceites de Pescado/farmacología , Masculino , Corteza Prefrontal/metabolismo , Carbonilación Proteica , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Conducta Espacial/efectos de los fármacosRESUMEN
Drug abuse and addiction are overwhelming health problems mainly during adolescence. Based on a previous study of our research group, the rats that received modafinil (MD) during the adolescence showed less preference for amphetamine (AMPH) in adulthood. Our current hypothesis is that MD will show beneficial effects against AMPH preference and abstinence symptoms during adolescence, a critical lifetime period when drug hedonic effects are more pronounced. We investigated the influence of MD pretreatment on AMPH preference in conditioned place preference (CPP) paradigm in adolescent rats and anxiety-like symptoms during drug withdrawal (48â¯h after the last AMPH dose) in elevated plus maze (EPM) task. Besides that, oxidative and molecular status were evaluated in the ventral tegmental area (VTA) and striatum. Our findings showed, as it was expected, that adolescent animals developed AMPH preference together with anxiety-like symptoms during the drug withdrawal while the MD pretreatment prevented those behaviors. Besides promoting benefits on reward parameters, MD was able to preserve VTA and striatum from oxidative damages. This was observed by the increased catalase activity and reduced generation of reactive species and lipid peroxidation, which were inversely modified by AMPH exposure. At molecular level, MD exerted an interesting modulatory activity on the VTA and induced an up-regulation in striatal dopaminergic targets (TH, DAT, D1R and D2R). So far, during the adolescence, MD presented beneficial behavioral outcomes that could be attributed to its modulatory activity on the striatal dopaminergic system in an attempt to maintain the adequate dopamine levels.
Asunto(s)
Trastornos Relacionados con Anfetaminas/tratamiento farmacológico , Ansiedad/prevención & control , Estimulantes del Sistema Nervioso Central/farmacología , Modafinilo/farmacología , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Anfetamina/farmacología , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Masculino , Ratas Wistar , Maduración Sexual , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/psicología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/crecimiento & desarrollo , Área Tegmental Ventral/metabolismoRESUMEN
Although phenytoin is an antiepileptic drug used in the oral treatment of epilepsy, its off-label use as a cutaneous healing agent has been studied in recent years due to the frequent reports of gingival hyperplasia after oral administration. However, the cutaneous topical application of phenytoin should prevent percutaneous skin permeation. Therefore, the aim of this study was to evaluate the in vitro skin permeation/retention and in vivo effects of nanocapsules and nanoemulsions loaded with phenytoin and formulated as chitosan hydrogels on the healing process of cutaneous wounds in rats. The hydrogels had adequate pH values (4.9-5.6) for skin application, drug content of 0.025% (w/w), and non-Newtonian pseudoplastic rheological behaviour. Hydrogels containing nanocapsules and nanoemulsions enabled improved controlled release of phenytoin and adhesion to skin, compared with hydrogels containing non-encapsulated phenytoin. In vitro skin permeation studies showed that phenytoin permeation to the receptor compartment, and consequently the risk of systemic absorption, may be reduced by nanoencapsulation without any change in the in vivo performance of phenytoin in the wound healing process in rats.
Asunto(s)
Quitosano , Hidrogel de Polietilenoglicol-Dimetacrilato , Nanocápsulas , Fenitoína , Absorción Cutánea/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Administración Tópica , Animales , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacocinética , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Masculino , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Fenitoína/química , Fenitoína/farmacocinética , Fenitoína/farmacología , Ratas , Ratas Wistar , Porcinos , Heridas y Lesiones/metabolismoRESUMEN
A balanced intake of fatty acids (FA) of both omega-6 (n-6) and -3 (n-3) series is essential for memory. The Mediterranean diet (MD), rich in n-3 polyunsaturated FA (PUFA) and low n-6/n-3 PUFA ratio, has shown beneficial influences on health. Inversely, the Western diet contains saturated fats, including hydrogenated vegetable fat (HVF, rich in trans fat) and interesterified fat (IF), making the n-6/n-3 PUFA ratio high. Due to the health impairments caused by HVF, it has been replaced by IF in processed foods. We compared an MD (balanced n-6/n-3 PUFA ratio) with Western diets 1 (WD1, rich in trans fat) and 2 (WD2, rich in IF) on memory process per se and following scopolamine (SCO) administration, which induces amnesia in rats. While MD exerted protective effects, WD1 and WD2 showed declined memory per se, showing higher susceptibility to SCO-induced memory deficits. In addition, WD1 and WD2 showed increased proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1ß, IL-6] and decreased anti-inflammatory cytokines (IL-10) in plasma. IL-1ß was higher in the hippocampus of WD1, which was reflected on histological assessments. Significant correlations between cognitive decline and inflammatory markers reinforce our hypothesis: MD-like fats may act preventively on cognitive loss, while WD-like fats may facilitate this.
Asunto(s)
Dieta Mediterránea , Dieta Occidental , Grasas de la Dieta/efectos adversos , Trastornos de la Memoria/etiología , Animales , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Inflamación/etiología , Masculino , Ratas Wistar , Escopolamina/efectos adversosRESUMEN
Haloperidol is a widely used antipsychotic, despite the severe motor side effects associated with its chronic use. This study was carried out to compare oral dyskinesia induced by different formulations of haloperidol-loaded nanocapsules containing caprylic/capric triglycerides, fish oil or grape seed oil (GSO) as core, as well as free haloperidol. Haloperidol-loaded lipid-core nanocapsules formulations were prepared, physicochemical characterized and administered (0.5 mg kg-1-ip) to rats for 28 days. Oral dyskinesia was evaluated acutely and subchronically and after that cell viability and free radical generation in cortex and substantia nigra. All formulations presented satisfactory physicochemical parameters. Acutely, all formulations were able to prevent oral dyskinesia development in comparison to free haloperidol, except haloperidol-loaded nanocapsules containing GSO, whose effect was only partial. After subchronic treatment, all haloperidol-loaded nanocapsules formulations prevented oral dyskinesia in relation to free drug. Also, haloperidol-loaded nanocapsules containing fish oil and GSO were more effective than caprylic/capric triglycerides nanocapsules and free haloperidol in cell viability preservation and control of free radical generation. Our findings showed that fish oil formulation may be considered as the best formulation of haloperidol-loaded lipid-core nanocapsules, being able to prevent motor side effects associated with chronic use of antipsychotic drugs, as haloperidol.
Asunto(s)
Antidiscinéticos/farmacología , Discinesias/tratamiento farmacológico , Aceites de Pescado/química , Haloperidol/farmacología , Nanocápsulas/uso terapéutico , Aceites de Plantas/química , Vitis/química , Animales , Productos Biológicos/farmacología , Supervivencia Celular/efectos de los fármacos , Discinesias/metabolismo , Peces , Masculino , Ratas WistarRESUMEN
Microcystin-LR (MIC-LR) is a hepatotoxin, with toxicity mechanisms linked to oxidative stress. Besides, neurotoxic effects of MIC-LR have recently been described. Herein, we evaluated the effects of environmentally important concentrations of MIC-LR (1, 10, 100, 250, and 500 µg/L) on oxidative stress markers and the survival rate of the nematode Caenorhabditis elegans (C. elegans). In addition, a possible protective effect of the carotenoid lutein (LUT) extracted from marigold flowers against MIC-LR toxicity was investigated. Higher concentrations (250 and 500 µg/L) of MIC-LR induced the generation of reactive oxygen species (ROS) and resulted in a survival loss in C elegans. Meanwhile, all MIC-LR concentrations caused an increase in the superoxide dismutase (SOD) expression, while catalase (CAT) expression was only affected at 500 µg/L. The carotenoid LUT prevented the ROS generation, impairment in the CAT expression, and the survival loss induced by MIC-LR in C. elegans. Our results confirm the toxicity of MIC-LR even in a liver-lacking invertebrate and the involvement of oxidative events in this response. Additionally, LUT appears to be able to mitigate the MIC-LR toxic effects.
Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Luteína/administración & dosificación , Microcistinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Tagetes/química , Animales , Caenorhabditis elegans/metabolismo , Catalasa/metabolismo , Flores/química , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Toxinas Marinas , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Addiction is a serious health problem which leads to general social impairment. The period of adolescence plays a significant role in drug abuse liability. Psychostimulants, such as modafinil (MOD), are majorly used by teenagers seeking improvements in cognition, which contributes to its indiscriminate use. This study aimed to investigate the influence of MOD (64 mg/kg by gavage, once a day) treatment during adolescence [post-natal day (PND) 28-42] on amphetamine (AMPH, 4 mg/kg i.p.)-conditioned place preference (CPP) in early adulthood (PND 60). Our findings showed that AMPH increased CPP for the drug and anxiety-like behaviours; on the other hand, AMPH decreased the number of crossings and recognition index. In addition, AMPH decreased catalase activity and increased reactive species, malondialdehyde and carbonyl protein levels in the hippocampus. AMPH also increased pro-brain derived neurotrophic factor (BDNF), tyrosine kinase receptor B, dopamine transporter, D1R and decreased BDNF and D2R immunoreactivity. Contrarily, animals pre-exposed to MOD showed reduced AMPH-CPP, no locomotor impairment, less anxiety-like behaviours and no memory deficits. In addition, MOD showed antioxidant activity by preventing AMPH-induced oxidative damage in the hippocampus. Moreover, molecular analysis showed that MOD was able to modulate the hippocampal dopaminergic system, thus preventing AMPH-induced impairments. Animals that received MOD during adolescence showed reduced AMPH-CPP in early adulthood. These unexpected behavioural effects of MOD on CPP could be due to its hippocampal dopaminergic system modulation, mainly by its action on D1R, which is closely linked to drug addiction. Nevertheless, further studies are necessary.
Asunto(s)
Anfetamina/farmacología , Conducta Animal/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Factores de Edad , Anfetamina/toxicidad , Trastornos Relacionados con Anfetaminas/prevención & control , Animales , Antioxidantes/farmacología , Estimulantes del Sistema Nervioso Central/toxicidad , Condicionamiento Psicológico/efectos de los fármacos , Dopamina/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Modafinilo , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Promotores de la Vigilia/farmacologíaRESUMEN
BACKGROUND: This study evaluated the antimicrobial photodynamic therapy (aPDT) effects using the methylene blue (MB) in ethanol 20% on systemic oxidative status and collagen content from gingiva of rats with periodontitis. METHODS: Rats were divided into five experimental groups: NC (negative control; no periodontitis); PC (positive control; periodontitis without any treatment); SRP (periodontitis and scaling and root planing), aPDT I (periodontitis and SRP+aPDT+MB solubilized in water), and aPDT II (periodontitis and SRP+aPDT+MB solubilized in ethanol 20%). After 7days of removal of the ligature, the periodontal treatments were performed. At 7/15/30days, gingival tissue was removed for morphometric analysis. The erythrocytes were used to evaluate systemic oxidative status. RESULTS: PC group showed higher lipoperoxidation levels at 7/15/30days. aPDT indicated a protective influence in erythrocytes at 15days observed by the elevation in levels of systemic antioxidant defense. aPDT II group was the only one that restored the total collagen area in 15days, and recovered the type I collagen area at the same time point. CONCLUSIONS: aPDT as an adjunct to the SRP can induce the systemic protective response against oxidative stress periodontitis-induced and recover the gingival collagen, thus promoting the healing periodontal, particularly when the MB is dissolved in ethanol 20%.
Asunto(s)
Encía/efectos de los fármacos , Azul de Metileno/farmacología , Periodontitis/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Animales , Colágeno/efectos de los fármacos , Raspado Dental/métodos , Etanol/química , Azul de Metileno/química , Estrés Oxidativo/efectos de los fármacos , Fármacos Fotosensibilizantes/química , Ratas , Ratas Wistar , Agua/químicaRESUMEN
In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat.
Asunto(s)
Grasas de la Dieta/toxicidad , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Triglicéridos/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Catalasa/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Ácido Linoleico/metabolismo , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/psicología , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Precursores de Proteínas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas Wistar , Receptor trkB , Reconocimiento en Psicología/efectos de los fármacos , Medición de RiesgoRESUMEN
This study aimed to assess the influence of maternal dietary fat intake during pregnancy or lactation on memory of adult offspring after chronic mild stress (CMS) exposure. Female Wistar rats were supplemented daily with soybean oil/fish oil (SO/FO) or hydrogenated vegetable fat (HVF) by oral gavage (3.0g/kg body weight) during pregnancy or lactation. On post-natal day (PND) 60, half of the animals were exposed to CMS following behavioral assessments. While the adult offspring born under influence of SO/FO and HVF supplementations during pregnancy showed higher levels of n-3 and n-6 fatty acids (FA) series DHA and ARA metabolites, respectively, in the hippocampus, adult offspring born from supplemented dams during lactation showed higher levels of their precursors: ALA and LA. However, only HVF supplementation allowed TFA incorporation of adult offspring, and levels were higher in lactation period. Adult offspring born from dams supplemented with trans fat in both pregnancy and lactation showed short and long-term memory impairments before and after CMS. Furthermore, our study also showed higher memory impairment in offspring born from HVF-supplemented dams during lactation in comparison to pregnancy. BDNF expression was increased by stress exposure in offspring from both SO/FO- and HVF-supplemented dams during pregnancy. In addition, offspring from HVF-supplemented dams showed decreased TrkB expression in both supplemented periods, regardless of stress exposure. In conclusion, these findings show for the first time that the type of dietary FA as well as the period of brain development is able to change FA incorporation in brain neural membranes.