RESUMEN
Nanoparticle uptake by cells has been studied for applications both in nanomedicine and in nanosafety. While the majority of studies have focused on the biological mechanisms underlying particle internalization, less attention has been given to questions of a more quantitative nature, such as how many nanoparticles enter cells and how rapidly they do so. To address this, we exposed human embryonic kidney cells to 40-200 nm carboxylated polystyrene nanoparticles and the particles were observed by live-cell confocal and super-resolution stimulated emission depletion fluorescence microscopy. How long a particle remained at the cell membrane after adsorbing onto it was monitored, distinguishing whether the particle ultimately desorbed again or was internalized by the cell. We found that the majority of particles desorb, but interestingly, most of the particles that are internalized do so within seconds, independently of particle size. As this is faster than typical endocytic mechanisms, we interpret this observation as the particles entering via an endocytic event that is already taking place (as opposed to directly triggering their own uptake) or possibly via an as yet uncharacterized endocytic route. Aside from the rapidly internalizing particles, a minority of particles remain at the membrane for tens of seconds to minutes before desorbing or being internalized. We also followed particles after cell internalization, observing particles that appeared to exit the cell, sometimes as rapidly as within tens of seconds. Overall, our results provide quantitative information about nanoparticle cell internalization times and early trafficking.
Asunto(s)
Nanopartículas , Tetranitrato de Pentaeritritol , Humanos , Transporte Biológico , Ácidos Carboxílicos , Membrana Celular , RiñónRESUMEN
Endosomal Sorting Complex Required for Transport (ESCRT) proteins can be transiently recruited to the plasma membrane for membrane repair and formation of extracellular vesicles. Here, we discovered micrometer-sized worm-shaped ESCRT structures that stably persist for multiple hours at the plasma membrane of macrophages, dendritic cells, and fibroblasts. These structures surround clusters of integrins and known cargoes of extracellular vesicles. The ESCRT structures are tightly connected to the cellular support and are left behind by the cells together with surrounding patches of membrane. The phospholipid composition is altered at the position of the ESCRT structures, and the actin cytoskeleton is locally degraded, which are hallmarks of membrane damage and extracellular vesicle formation. Disruption of actin polymerization increased the formation of the ESCRT structures and cell adhesion. The ESCRT structures were also present at plasma membrane contact sites with membrane-disrupting silica crystals. We propose that the ESCRT proteins are recruited to adhesion-induced membrane tears to induce extracellular shedding of the damaged membrane.
Asunto(s)
Actinas , Complejos de Clasificación Endosomal Requeridos para el Transporte , Integrinas , Actinas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Integrinas/genética , Integrinas/metabolismo , Transporte de Proteínas , Fosfolípidos/química , Membrana Celular , Macrófagos , Células Dendríticas , Fibroblastos , Humanos , Conformación ProteicaRESUMEN
Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.
Asunto(s)
Cromatina , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Microscopía ConfocalRESUMEN
ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA-adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III-dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III-dependent membrane remodeling.
Asunto(s)
Archaea , Complejos de Clasificación Endosomal Requeridos para el Transporte , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Archaea/metabolismo , Polímeros , División CelularRESUMEN
Administration of temperature-responsive drug carriers that release anticancer drugs at high temperatures can benefit hyperthermia therapies because of the synergistic effect of anticancer drug molecules and high temperature on killing the cancer cells. In this study, we design and characterize a new temperature-responsive nanocarrier based on a naturally occurring and biocompatible clay mineral, halloysite nanotubes. Poly(N-isopropylacrylamide) brushes were grown on the surface of halloysite nanotubes using a combination of mussel-inspired dopamine polymerization and surface-initiated atom transfer radical polymerization. The chemical structure of the hybrid materials was investigated using X-ray photoelectron spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The hybrid material was shown to have a phase transition temperature of about 32 °C, corresponding to a 40 nm thick polymer layer surrounding the nanotubes. Cell studies suggested that grafting of poly(N-isopropylacrylamide) brushes on the polydopamine-modified halloysite nanotubes suppresses the cytotoxicity caused by the polydopamine interlayer and drug release studies on nanotubes loaded with doxorubicin showed that thanks to the poly(N-isopropylacrylamide) brushes a temperature-dependent drug release is observed. Finally, a fluorescent dye molecule was covalently attached to the polymer-grafted nanotubes and stimulated emission depletion nanoscopy was used to confirm the internalization of the nanotubes in HeLa cells.