Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(2): 026404, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39073931

RESUMEN

The piecewise linearity condition on the total energy with respect to the total magnetization of finite quantum systems is derived using the infinite-separation-limit technique. This generalizes the well-known constancy condition, related to static correlation error, in approximate density functional theory. The magnetic analog of Koopmans' theorem in density functional theory is also derived. Moving to fractional electron count, the tilted-plane condition is derived, lifting certain assumptions in previous works. This generalization of the flat-plane condition characterizes the total energy surface of a finite system for all values of electron count N and magnetization M. This result is used in combination with tabulated spectroscopic data to show the flat-plane structure of the oxygen atom, among others. We find that derivative discontinuities with respect to electron count sometimes occur at noninteger values. A diverse set of tilted-plane structures is shown to occur in d-orbital subspaces, depending on chemical coordination. General occupancy-based total-energy expressions are demonstrated thereby to be necessarily dependent on the symmetry-imposed degeneracies.

2.
J Chem Phys ; 159(21)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38038199

RESUMEN

It has long been postulated that within density-functional theory (DFT), the total energy of a finite electronic system is convex with respect to electron count so that 2Ev[N0] ≤ Ev[N0 - 1] + Ev[N0 + 1]. Using the infinite-separation-limit technique, this Communication proves the convexity condition for any formulation of DFT that is (1) exact for all v-representable densities, (2) size-consistent, and (3) translationally invariant. An analogous result is also proven for one-body reduced density matrix functional theory. While there are known DFT formulations in which the ground state is not always accessible, indicating that convexity does not hold in such cases, this proof, nonetheless, confirms a stringent constraint on the exact exchange-correlation functional. We also provide sufficient conditions for convexity in approximate DFT, which could aid in the development of density-functional approximations. This result lifts a standing assumption in the proof of the piecewise linearity condition with respect to electron count, which has proven central to understanding the Kohn-Sham bandgap and the exchange-correlation derivative discontinuity of DFT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...