Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomech ; 96: 109354, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31630773

RESUMEN

Tendon tissue engineering approaches are challenged by a limited understanding of the role mechanical loading plays in normal tendon development. We propose that the increased loading that developing postnatal tendons experience with the onset of locomotor behavior impacts tendon formation. The objective of this study was to assess the onset of spontaneous weight-bearing locomotion in postnatal day (P) 1, 5, and 10 rats, and characterize the relationship between locomotion and the mechanical development of weight-bearing and non-weight-bearing tendons. Movement was video recorded and scored to determine non-weight-bearing, partial weight-bearing, and full weight-bearing locomotor behavior at P1, P5, and P10. Achilles tendons, as weight-bearing tendons, and tail tendons, as non-weight-bearing tendons, were mechanically evaluated. We observed a significant increase in locomotor behavior in P10 rats, compared to P1 and P5. We also found corresponding significant differences in the maximum force, stiffness, displacement at maximum force, and cross-sectional area in Achilles tendons, as a function of postnatal age. However, the maximum stress, strain at maximum stress, and elastic modulus remained constant. Tail tendons of P10 rats had significantly higher maximum force, maximum stress, elastic modulus, and stiffness compared to P5. Our results suggest that the onset of locomotor behavior may be providing the mechanical cues regulating postnatal tendon growth, and their mechanical development may proceed differently in weight-bearing and non-weight-bearing tendons. Further analysis of how this loading affects developing tendons in vivo may inform future engineering approaches aiming to apply such mechanical cues to regulate engineered tendon formation in vitro.


Asunto(s)
Locomoción/fisiología , Tendones/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Conducta Animal , Calcáneo/fisiología , Módulo de Elasticidad , Ratas Sprague-Dawley , Estrés Mecánico , Cola (estructura animal)/fisiología , Tendones/fisiología , Ingeniería de Tejidos , Soporte de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...