Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Zool ; 15: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568316

RESUMEN

Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.

2.
Sci Rep ; 5: 8297, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25656854

RESUMEN

DNA barcoding promises to be a useful tool to identify pest species assuming adequate representation of genetic variants in a reference library. Here we examined mitochondrial DNA barcodes in a global urban pest, the American cockroach (Periplaneta americana). Our sampling effort generated 284 cockroach specimens, most from New York City, plus 15 additional U.S. states and six other countries, enabling the first large-scale survey of P. americana barcode variation. Periplaneta americana barcode sequences (n = 247, including 24 GenBank records) formed a monophyletic lineage separate from other Periplaneta species. We found three distinct P. americana haplogroups with relatively small differences within (≤0.6%) and larger differences among groups (2.4%-4.7%). This could be interpreted as indicative of multiple cryptic species. However, nuclear DNA sequences (n = 77 specimens) revealed extensive gene flow among mitochondrial haplogroups, confirming a single species. This unusual genetic pattern likely reflects multiple introductions from genetically divergent source populations, followed by interbreeding in the invasive range. Our findings highlight the need for comprehensive reference databases in DNA barcoding studies, especially when dealing with invasive populations that might be derived from multiple genetically distinct source populations.


Asunto(s)
ADN Mitocondrial , Variación Genética , Endogamia , Periplaneta/clasificación , Periplaneta/genética , Animales , Código de Barras del ADN Taxonómico , Haplotipos , Fenotipo , Filogenia , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...