Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(18): 4976-4982, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38691639

RESUMEN

Photoassisted catalysis using Ni complexes is an emerging field for cross-coupling reactions in organic synthesis. However, the mechanism by which light enables and enhances the reactivity of these complexes often remains elusive. Although optical techniques have been widely used to study the ground and excited states of photocatalysts, they lack the specificity to interrogate the electronic and structural changes at specific atoms. Herein, we report metal-specific studies using transient Ni L- and K-edge X-ray absorption spectroscopy of a prototypical Ni photocatalyst, (dtbbpy)Ni(o-tol)Cl (dtb = 4,4'-di-tert-butyl, bpy = bipyridine, o-tol = ortho-tolyl), in solution. We unambiguously confirm via direct experimental evidence that the long-lived (∼5 ns) excited state is a tetrahedral metal-centered triplet state. These results demonstrate the power of ultrafast X-ray spectroscopies to unambiguously elucidate the nature of excited states in important transition-metal-based photocatalytic systems.

2.
Angew Chem Int Ed Engl ; 61(46): e202211433, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36161982

RESUMEN

We demonstrate that several visible-light-mediated carbon-heteroatom cross-coupling reactions can be carried out using a photoactive NiII precatalyst that forms in situ from a nickel salt and a bipyridine ligand decorated with two carbazole groups (Ni(Czbpy)Cl2 ). The activation of this precatalyst towards cross-coupling reactions follows a hitherto undisclosed mechanism that is different from previously reported light-responsive nickel complexes that undergo metal-to-ligand charge transfer. Theoretical and spectroscopic investigations revealed that irradiation of Ni(Czbpy)Cl2 with visible light causes an initial intraligand charge transfer event that triggers productive catalysis. Ligand polymerization affords a porous, recyclable organic polymer for heterogeneous nickel catalysis of cross-coupling reactions. The heterogeneous catalyst shows stable performance in a packed-bed flow reactor during a week of continuous operation.

3.
J Am Chem Soc ; 144(27): 12116-12126, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35762527

RESUMEN

The continued development of solar energy as a renewable resource necessitates new approaches to sustaining photodriven charge separation (CS). We present a bioinspired approach in which photoinduced conformational rearrangements at a ligand are translated into changes in coordination geometry and environment about a bound metal ion. Taking advantage of the differential coordination properties of CuI and CuII, these dynamics aim to facilitate intramolecular electron transfer (ET) from CuI to the ligand to create a CS state. The synthesis and photophysical characterization of CuCl(dpaaR) (dpaa = dipicolylaminoacetophenone, with R = H and OMe) are presented. These ligands incorporate a fluorophore that gives rise to a twisted intramolecular charge transfer (TICT) excited state. Excited-state ligand twisting provides a tetragonal coordination geometry capable of capturing CuII when an internal ortho-OMe binding site is present. NMR, IR, electron paramagnetic resonance (EPR), and optical spectroscopies, X-ray diffraction, and electrochemical methods establish the ground-state properties of these CuI and CuII complexes. The photophysical dynamics of the CuI complexes are explored by time-resolved photoluminescence and optical transient absorption spectroscopies. Relative to control complexes lacking a TICT-active ligand, the lifetimes of CS states are enhanced ∼1000-fold. Further, the presence of the ortho-OMe substituent greatly enhances the lifetime of the TICT* state and biases the coordination environment toward CuII. The presence of CuI decreases photoinduced degradation from 14 to <2% but does not result in significant quenching via ET. Factors affecting CS in these systems are discussed, laying the groundwork for our strategy toward solar energy conversion.


Asunto(s)
Complejos de Coordinación , Complejos de Coordinación/química , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Conformación Molecular
4.
Nano Lett ; 21(22): 9534-9542, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767364

RESUMEN

Understanding the electronic structure and dynamics of semiconducting nanomaterials at the atomic level is crucial for the realization and optimization of devices in solar energy, catalysis, and optoelectronic applications. We report here on the use of ultrafast X-ray linear dichroism spectroscopy to monitor the carrier dynamics in epitaxial ZnO nanorods after band gap photoexcitation. By rigorously subtracting out thermal contributions and conducting ab initio calculations, we reveal an overall depletion of absorption cross sections in the transient X-ray spectra caused by photogenerated charge carriers screening the core-hole potential of the X-ray absorbing atom. At low laser excitation densities, we observe phase-space filling by excited electrons and holes separately. These results pave the way for carrier- and element-specific probing of charge transfer dynamics across heterostructured interfaces with ultrafast table-top and fourth-generation X-ray sources.

5.
Adv Mater ; 31(12): e1806863, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30697829

RESUMEN

The electron acceptor F4TCNQ p-dopes aggregates "nanowires" of poly(3-hexylthiophene) in nonpolar solvents but does not dope unaggregated chains. The standard free energy change for the charge transfer to form an ion pair is ΔG°et = -0.21 eV. The dissociation constant to produce free ions in toluene by DC conductivity is K°d = 1 × 10-8 ± 50% (ΔG°d = 0.48 ± 0.05 eV). This remarkably large K°d , for ions in such a low polarity medium, may reflect interchain delocalization of the hole. The particular characteristics of this material system enables determination of both ΔG°et and ΔG°d , to find the overall free energy change from the two neutral species to completely separated ions in nonpolar media. It is endergonic by +0.27 ± 0.05 eV in contrast to -0.6 eV estimated from reported HOMO LUMO differences, illustrating the challenges that persist in determining such energetics. Steady state microwave conductivity experiments on doped aggregates confirm that holes in the aggregates cannot easily escape their dopant counterion, but at higher dopant concentrations, holes become mobile. These results provide insight into the mechanisms of charge separation involving intermolecularly delocalized charges in nonpolar media, an integral process in organic photovoltaic devices and doped molecular films.

6.
Appl Opt ; 56(31): 8738-8745, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091689

RESUMEN

This research images trapped atoms in three dimensions, utilizing light field imaging. Such a system is of interest in the development of atom interferometer accelerometers in dynamic systems where strictly defined focal planes may be impractical. In this research, a light field microscope was constructed utilizing a Lytro Development Kit micro lens array and sensor. It was used to image fluorescing rubidium atoms in a magneto optical trap. The three-dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration that the low magnification (1.25) of the system changed typical assumptions used in the optics model for the PSF. The 3D reconstruction is analyzed with respect to a standard off-axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100 µm accuracy in a 3 mm deep volume, with a 16 µm in-focus standard resolution with a 3.9 mm by 3.9 mm field of view. Optical axis spreading is observed in the reconstruction and discussed. The 3D information can be used to determine properties of the atom cloud with a single camera and single image, and can be applied anywhere 3D information is needed but optical access may be limited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...