Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38895376

RESUMEN

Local protein synthesis in axons and dendrites underpins synaptic plasticity. However, the composition of the protein synthesis machinery in distal neuronal processes and the mechanisms for its activity-driven deployment to local translation sites remain unclear. Here, we employed cryo-electron tomography, volume electron microscopy, and live-cell imaging to identify Ribosome-Associated Vesicles (RAVs) as a dynamic platform for moving ribosomes to distal processes. Stimulation via chemically-induced long-term potentiation causes RAV accumulation in distal sites to drive local translation. We also demonstrate activity-driven changes in RAV generation and dynamics in vivo, identifying tubular ER shaping proteins in RAV biogenesis. Together, our work identifies a mechanism for ribosomal delivery to distal sites in neurons to promote activity-dependent local translation.

2.
Trends Genet ; 39(12): 889-891, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574379

RESUMEN

In aged animals from worms to humans, transcriptional elongation rates are faster, leading to changes in transcript quality and alternative splicing. Recent work by Debès et al. shows how interventions that slow elongation rates, such as mutating RNA polymerase II (Pol II) or increasing nucleosome density to impose transcriptional 'traffic', delay senescence and promote longevity.


Asunto(s)
Longevidad , Transcripción Genética , Animales , Humanos , Anciano , Longevidad/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Nucleosomas , Empalme Alternativo
3.
iScience ; 26(4): 106349, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968071

RESUMEN

Mutations in the mitochondrial genome (mtDNA) can be pathogenic. Owing to the multi-copy nature of mtDNA, wild-type copies can compensate for the effects of mutant mtDNA. Wild-type copies available for compensation vary depending on the mutant load and the total copy number. Here, we examine both mutant load and copy number in the tissues of Caenorhabditis elegans. We found that neurons, but not muscles, have modestly higher mutant load than rest of the soma. We also uncovered different effect of aak-2 knockout on the mutant load in the two tissues. The most surprising result was a sharp decline in somatic mtDNA content over time. The scale of the copy number decline surpasses the modest shifts in mutant load, suggesting that it may exert a substantial effect on mitochondrial function. In summary, measuring both the copy number and the mutant load provides a more comprehensive view of the mutant mtDNA dynamics.

4.
Biochem Soc Trans ; 50(5): 1389-1402, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36305642

RESUMEN

Advances in public health have nearly doubled life expectancy over the last century, but this demographic shift has also changed the landscape of human illness. Today, chronic and age-dependent diseases dominate the leading causes of morbidity and mortality worldwide. Targeting the underlying molecular, genetic and cell biological drivers of the aging process itself appears to be an increasingly viable strategy for developing therapeutics against these diseases of aging. Towards this end, one of the most exciting developments in cell biology over the last decade is the explosion of research into organelle contact sites and related mechanisms of inter-organelle communication. Identification of the molecular mediators of inter-organelle tethering and signaling is now allowing the field to investigate the consequences of aberrant organelle interactions, which frequently seem to correlate with age-onset pathophysiology. This review introduces the major cellular roles for inter-organelle interactions, including the regulation of organelle morphology, the transfer of ions, lipids and other metabolites, and the formation of hubs for nutrient and stress signaling. We explore how these interactions are disrupted in aging and present findings that modulation of inter-organelle communication is a promising avenue for promoting longevity. Through this review, we propose that the maintenance of inter-organelle interactions is a pillar of healthy aging. Learning how to target the cellular mechanisms for sensing and controlling inter-organelle communication is a key next hurdle for geroscience.


Asunto(s)
Envejecimiento , Orgánulos , Humanos , Envejecimiento/metabolismo , Longevidad , Membranas Mitocondriales , Orgánulos/metabolismo , Comunicación Celular
5.
Elife ; 112022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35451962

RESUMEN

The mitochondrial unfolded protein response (UPRmt) has emerged as a predominant mechanism that preserves mitochondrial function. Consequently, multiple pathways likely exist to modulate UPRmt. We discovered that the tRNA processing enzyme, homolog of ELAC2 (HOE-1), is key to UPRmt regulation in Caenorhabditis elegans. We find that nuclear HOE-1 is necessary and sufficient to robustly activate UPRmt. We show that HOE-1 acts via transcription factors ATFS-1 and DVE-1 that are crucial for UPRmt. Mechanistically, we show that HOE-1 likely mediates its effects via tRNAs, as blocking tRNA export prevents HOE-1-induced UPRmt. Interestingly, we find that HOE-1 does not act via the integrated stress response, which can be activated by uncharged tRNAs, pointing toward its reliance on a new mechanism. Finally, we show that the subcellular localization of HOE-1 is responsive to mitochondrial stress and is subject to negative regulation via ATFS-1. Together, we have discovered a novel RNA-based cellular pathway that modulates UPRmt.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada
6.
Cytoskeleton (Hoboken) ; 77(10): 379-398, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32969593

RESUMEN

Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.


Asunto(s)
Actomiosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Filaminas/metabolismo , Contracción Muscular/fisiología
7.
Cell Rep ; 32(10): 108125, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32905769

RESUMEN

Individually, dysfunction of both the endoplasmic reticulum (ER) and mitochondria has been linked to aging, but how communication between these organelles might be targeted to promote longevity is unclear. Here, we provide evidence that, in Caenorhabditis elegans, inhibition of the conserved unfolded protein response (UPRER) mediator, activating transcription factor (atf)-6, increases lifespan by modulating calcium homeostasis and signaling to mitochondria. Atf-6 loss confers longevity via downregulation of the ER calcium buffer, calreticulin. ER calcium release via the inositol triphosphate receptor (IP3R/itr-1) is required for longevity, while IP3R/itr-1 gain of function is sufficient to extend lifespan. Highlighting coordination between organelles, the mitochondrial calcium import channel mcu-1 is also required for atf-6 longevity. IP3R inhibition leads to impaired mitochondrial bioenergetics and hyperfusion, which is sufficient to suppress long life in atf-6 mutants. This study reveals the importance of organellar calcium handling as a critical output for the UPRER in determining the quality of aging.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Homeostasis , Humanos , Longevidad
8.
Cell Metab ; 26(6): 884-896.e5, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29107506

RESUMEN

Mitochondrial network remodeling between fused and fragmented states facilitates mitophagy, interaction with other organelles, and metabolic flexibility. Aging is associated with a loss of mitochondrial network homeostasis, but cellular processes causally linking these changes to organismal senescence remain unclear. Here, we show that AMP-activated protein kinase (AMPK) and dietary restriction (DR) promote longevity in C. elegans via maintaining mitochondrial network homeostasis and functional coordination with peroxisomes to increase fatty acid oxidation (FAO). Inhibiting fusion or fission specifically blocks AMPK- and DR-mediated longevity. Strikingly, however, preserving mitochondrial network homeostasis during aging by co-inhibition of fusion and fission is sufficient itself to increase lifespan, while dynamic network remodeling is required for intermittent fasting-mediated longevity. Finally, we show that increasing lifespan via maintaining mitochondrial network homeostasis requires FAO and peroxisomal function. Together, these data demonstrate that mechanisms that promote mitochondrial homeostasis and plasticity can be targeted to promote healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Restricción Calórica , Longevidad , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Envejecimiento , Animales , Línea Celular , Ácidos Grasos/metabolismo , Metabolómica , Ratones , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Modelos Animales
9.
Exp Suppl ; 107: 227-256, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812983

RESUMEN

Chronic, age-associated diseases are already among the leading causes of morbidity and death in the world, a problem exacerbated by the rapidly rising proportion of elderly in the global population. This emergent epidemic represents the next great challenge for biomedical science and public health. Fortunately, decades of studies into the biology of aging have provided a head start by revealing an evolutionarily conserved network of genes that controls the rate and quality of the aging process itself and which can thereby be targeted for protection against age-onset disease. A number of dietary, genetic, and pharmacological interventions, including dietary restriction (DR) and the biguanide metformin, can extend healthy lifespan and reduce the incidence of multiple chronic conditions. Many of these interventions recurrently involve a core network of nutrient sensors: AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), the insulin/insulin-like growth factor signaling pathway (IIS), and the sirtuins. Here, we will summarize how AMPK acts downstream of these pro-longevity interventions and within this network of nutrient sensors to control the cell and physiological processes important for defining how well we age.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Metabolismo Energético/genética , Longevidad/genética , Sirtuinas/genética , Somatomedinas/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Restricción Calórica , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Insulina/genética , Insulina/metabolismo , Longevidad/efectos de los fármacos , Metformina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal , Sirtuinas/metabolismo , Somatomedinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
10.
G3 (Bethesda) ; 6(6): 1695-705, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27172180

RESUMEN

Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-ß ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.


Asunto(s)
Adaptación Biológica/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adaptación Biológica/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Antagonistas de Receptores de Cannabinoides/química , Antagonistas de Receptores de Cannabinoides/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Larva , Ligandos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/metabolismo , Reproducción/efectos de los fármacos , Reproducción/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
11.
Cell Metab ; 22(4): 709-20, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26365180

RESUMEN

Mitochondria undergo architectural/functional changes in response to metabolic inputs. How this process is regulated in physiological feeding/fasting states remains unclear. Here we show that mitochondrial dynamics (notably fission and mitophagy) and biogenesis are transcriptional targets of the circadian regulator Bmal1 in mouse liver and exhibit a metabolic rhythm in sync with diurnal bioenergetic demands. Bmal1 loss-of-function causes swollen mitochondria incapable of adapting to different nutrient conditions accompanied by diminished respiration and elevated oxidative stress. Consequently, liver-specific Bmal1 knockout (LBmal1KO) mice accumulate oxidative damage and develop hepatic insulin resistance. Restoration of hepatic Bmal1 activities in high-fat-fed mice improves metabolic outcomes, whereas expression of Fis1, a fission protein that promotes quality control, rescues morphological/metabolic defects of LBmal1KO mitochondria. Interestingly, Bmal1 homolog AHA-1 in C. elegans retains the ability to modulate oxidative metabolism and lifespan despite lacking circadian regulation. These results suggest clock genes are evolutionarily conserved energetics regulators.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Criptocromos/genética , Criptocromos/metabolismo , Dieta Alta en Grasa , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/metabolismo , Longevidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Interferencia de ARN , Transducción de Señal
12.
Cell ; 160(5): 842-855, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723162

RESUMEN

Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Catecolaminas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Caenorhabditis elegans/citología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Longevidad , Receptores Citoplasmáticos y Nucleares/metabolismo
13.
Cell Metab ; 20(1): 10-25, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24726383

RESUMEN

When energy supply is low, organisms respond by slowing aging and increasing resistance to diverse age-related pathologies. Targeting the mechanisms underpinning this response may therefore treat multiple disorders through a single intervention. Here, we discuss AMP-activated protein kinase (AMPK) as an integrator and mediator of several pathways and processes linking energetics to longevity. Activated by low energy, AMPK is both prolongevity and druggable, but its role in some pathologies may not be beneficial. As such, activating AMPK may modulate multiple longevity pathways to promote healthy aging, but unlocking its full potential may require selective targeting toward substrates involved in longevity assurance.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento , Metabolismo Energético , Proteínas Quinasas Activadas por AMP/química , Animales , Aspirina/farmacología , Metabolismo Energético/efectos de los fármacos , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Metformina/farmacología , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Resveratrol , Estilbenos/farmacología
14.
PLoS One ; 7(3): e34153, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22470531

RESUMEN

Exposure of C. elegans to hypertonic stress-induced water loss causes rapid and widespread cellular protein damage. Survival in hypertonic environments depends critically on the ability of worm cells to detect and degrade misfolded and aggregated proteins. Acclimation of C. elegans to mild hypertonic stress suppresses protein damage and increases survival under more extreme hypertonic conditions. Suppression of protein damage in acclimated worms could be due to 1) accumulation of the chemical chaperone glycerol, 2) upregulation of protein degradation activity, and/or 3) increases in molecular chaperoning capacity of the cell. Glycerol and other chemical chaperones are widely thought to protect proteins from hypertonicity-induced damage. However, protein damage is unaffected by gene mutations that inhibit glycerol accumulation or that cause dramatic constitutive elevation of glycerol levels. Pharmacological or RNAi inhibition of proteasome and lyosome function and measurements of cellular protein degradation activity demonstrated that upregulation of protein degradation mechanisms plays no role in acclimation. Thus, changes in molecular chaperone capacity must be responsible for suppressing protein damage in acclimated worms. Transcriptional changes in chaperone expression have not been detected in C. elegans exposed to hypertonic stress. However, acclimation to mild hypertonicity inhibits protein synthesis 50-70%, which is expected to increase chaperone availability for coping with damage to existing proteins. Consistent with this idea, we found that RNAi silencing of essential translational components or acute exposure to cycloheximide results in a 50-80% suppression of hypertonicity-induced aggregation of polyglutamine-YFP (Q35::YFP). Dietary changes that increase protein production also increase Q35::YFP aggregation 70-180%. Our results demonstrate directly for the first time that inhibition of protein translation protects extant proteins from damage brought about by an environmental stressor, demonstrate important differences in aging- versus stress-induced protein damage, and challenge the widely held view that chemical chaperones are accumulated during hypertonic stress to protect protein structure/function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glicerol/metabolismo , Presión Osmótica , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Cicloheximida/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Chaperonas Moleculares/metabolismo , Mutación , Péptidos/genética , Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Pliegue de Proteína , Proteolisis , Interferencia de ARN , ARN Bicatenario/metabolismo
15.
J Cell Biol ; 185(1): 115-27, 2009 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-19332888

RESUMEN

MicroRNAs (miRNAs) are highly conserved small RNAs that act as translational regulators of gene expression, exerting their influence by selectively targeting mRNAs bearing complementary sequence elements. These RNAs function in diverse aspects of animal development and physiology. Because of an ability to act as rapid responders at the level of translation, miRNAs may also influence stress response. In this study, we show that the miR-8 family of miRNAs regulates osmoregulation in zebrafish embryos. Ionocytes, which are a specialized cell type scattered throughout the epidermis, are responsible for pH and ion homeostasis during early development before gill formation. The highly conserved miR-8 family is expressed in ionocytes and enables precise control of ion transport by modulating the expression of Nherf1, which is a regulator of apical trafficking of transmembrane ion transporters. Ultimately, disruption of miR-8 family member function leads to an inability to respond to osmotic stress and blocks the ability to properly traffic and/or cluster transmembrane glycoproteins at the apical surface of ionocytes.


Asunto(s)
Embrión no Mamífero/fisiología , MicroARNs/fisiología , Presión Osmótica , Estrés Fisiológico , Pez Cebra/fisiología , Animales , Secuencia de Bases , Transporte Biológico , Epistasis Genética , Homeostasis , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Alineación de Secuencia , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...