Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36711995

RESUMEN

Sarcomeres are the basic contractile units within cardiac myocytes, and the collective shortening of sarcomeres aligned along myofibrils generates the force driving the heartbeat. The alignment of the individual sarcomeres is important for proper force generation, and misaligned sarcomeres are associated with diseases including cardiomyopathies and COVID-19. The actin bundling protein, α-actinin-2, localizes to the "Z-Bodies" of sarcomere precursors and the "Z-Lines" of sarcomeres, and has been used previously to assess sarcomere assembly and maintenance. Previous measurements of α-actinin-2 organization have been largely accomplished manually, which is time-consuming and has hampered research progress. Here, we introduce sarcApp, an image analysis tool that quantifies several components of the cardiac sarcomere and their alignment in muscle cells and tissue. We first developed sarcApp to utilize deep learning-based segmentation and real space quantification to measure α-actinin-2 structures and determine the organization of both precursors and sarcomeres/myofibrils. We then expanded sarcApp to analyze "M-Lines" using the localization of myomesin and a protein that connects the Z-Lines to the M-Line (titin). sarcApp produces 33 distinct measurements per cell and 24 per myofibril that allow for precise quantification of changes in sarcomeres, myofibrils, and their precursors. We validated this system with perturbations to sarcomere assembly. We found perturbations that affected Z-Lines and M-Lines differently, suggesting that they may be regulated independently during sarcomere assembly.

2.
Nat Methods ; 19(11): 1419-1426, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280718

RESUMEN

Structured illumination microscopy (SIM) doubles the spatial resolution of a fluorescence microscope without requiring high laser powers or specialized fluorophores. However, the excitation of out-of-focus fluorescence can accelerate photobleaching and phototoxicity. In contrast, light-sheet fluorescence microscopy (LSFM) largely avoids exciting out-of-focus fluorescence, thereby enabling volumetric imaging with low photobleaching and intrinsic optical sectioning. Combining SIM with LSFM would enable gentle three-dimensional (3D) imaging at doubled resolution. However, multiple orientations of the illumination pattern, which are needed for isotropic resolution doubling in SIM, are challenging to implement in a light-sheet format. Here we show that multidirectional structured illumination can be implemented in oblique plane microscopy, an LSFM technique that uses a single objective for excitation and detection, in a straightforward manner. We demonstrate isotropic lateral resolution below 150 nm, combined with lower phototoxicity compared to traditional SIM systems and volumetric acquisition speed exceeding 1 Hz.


Asunto(s)
Imagenología Tridimensional , Iluminación , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Fotoblanqueo
3.
Gastroenterology ; 162(2): 604-620.e20, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34695382

RESUMEN

BACKGROUND & AIMS: Acinar to ductal metaplasia (ADM) occurs in the pancreas in response to tissue injury and is a potential precursor for adenocarcinoma. The goal of these studies was to define the populations arising from ADM, the associated transcriptional changes, and markers of disease progression. METHODS: Acinar cells were lineage-traced with enhanced yellow fluorescent protein (EYFP) to follow their fate post-injury. Transcripts of more than 13,000 EYFP+ cells were determined using single-cell RNA sequencing (scRNA-seq). Developmental trajectories were generated. Data were compared with gastric metaplasia, KrasG12D-induced neoplasia, and human pancreatitis. Results were confirmed by immunostaining and electron microscopy. KrasG12D was expressed in injury-induced ADM using several inducible Cre drivers. Surgical specimens of chronic pancreatitis from 15 patients were evaluated by immunostaining. RESULTS: scRNA-seq of ADM revealed emergence of a mucin/ductal population resembling gastric pyloric metaplasia. Lineage trajectories suggest that some pyloric metaplasia cells can generate tuft and enteroendocrine cells (EECs). Comparison with KrasG12D-induced ADM identifies populations associated with disease progression. Activation of KrasG12D expression in HNF1B+ or POU2F3+ ADM populations leads to neoplastic transformation and formation of MUC5AC+ gastric-pit-like cells. Human pancreatitis samples also harbor pyloric metaplasia with a similar transcriptional phenotype. CONCLUSIONS: Under conditions of chronic injury, acinar cells undergo a pyloric-type metaplasia to mucinous progenitor-like populations, which seed disparate tuft cell and EEC lineages. ADM-derived EEC subtypes are diverse. KrasG12D expression is sufficient to drive neoplasia when targeted to injury-induced ADM populations and offers an alternative origin for tumorigenesis. This program is conserved in human pancreatitis, providing insight into early events in pancreas diseases.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Metaplasia/genética , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Células Acinares/citología , Plasticidad de la Célula/genética , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Metaplasia/metabolismo , Mucina 5AC/genética , Páncreas/citología , Páncreas/metabolismo , Conductos Pancreáticos/citología , Pancreatitis/genética , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Análisis de la Célula Individual
4.
Nat Cell Biol ; 23(12): 1240-1254, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887515

RESUMEN

Extracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer's disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


Asunto(s)
Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Nanopartículas/metabolismo , Enfermedad de Alzheimer/patología , Enzima Convertidora de Angiotensina 2/metabolismo , Transporte Biológico/fisiología , Biomarcadores/metabolismo , COVID-19/patología , Enfermedades Cardiovasculares/patología , Comunicación Celular/fisiología , Línea Celular Tumoral , Células HeLa , Humanos , Ácido Láctico/metabolismo , MicroARNs/genética , Nanopartículas/clasificación , Neoplasias/patología , Microambiente Tumoral
5.
ACS Nano ; 15(11): 17528-17548, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34677937

RESUMEN

Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-to-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.


Asunto(s)
Dineínas , Cinesinas , Dineínas/metabolismo , Actinas/metabolismo , Septinas/metabolismo , Microtúbulos/metabolismo
6.
Sci Rep ; 11(1): 17759, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493746

RESUMEN

Inducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell-cell contact-dependent manner, however, it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Bases , Recuento de Células , Ciclo Celular/efectos de los fármacos , Diferenciación Celular , División Celular/efectos de los fármacos , Células Cultivadas , Inhibición de Contacto/efectos de los fármacos , Vía de Señalización Hippo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisofosfolípidos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple , ARN/biosíntesis , ARN/genética , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacología , Sulfonamidas/farmacología , Factores de Transcripción/fisiología , Proteínas Señalizadoras YAP
7.
Mol Biol Cell ; 32(20): br3, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34319762

RESUMEN

Force generation by the molecular motor myosin II (MII) at the actin cortex is a universal feature of animal cells. Despite its central role in driving cell shape changes, the mechanisms underlying MII regulation at the actin cortex remain incompletely understood. Here we show that myosin light chain kinase (MLCK) promotes MII turnover at the mitotic cortex. Inhibition of MLCK resulted in an alteration of the relative levels of phosphorylated regulatory light chain (RLC), with MLCK preferentially creating a short-lived pRLC species and Rho-associated kinase (ROCK) preferentially creating a stable ppRLC species during metaphase. Slower turnover of MII and altered RLC homeostasis on MLCK inhibition correlated with increased cortex tension, driving increased membrane bleb initiation and growth, but reduced bleb retraction during mitosis. Taken together, we show that ROCK and MLCK play distinct roles at the actin cortex during mitosis; ROCK activity is required for recruitment of MII to the cortex, while MLCK activity promotes MII turnover. Our findings support the growing evidence that MII turnover is an essential dynamic process influencing the mechanical output of the actin cortex.


Asunto(s)
Actinas , Proteínas de Unión al Calcio , Miosina Tipo II , Quinasa de Cadena Ligera de Miosina , Humanos , Actinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , División del Núcleo Celular , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Mitosis/fisiología , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Miosina Tipo II/fisiología , Quinasa de Cadena Ligera de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/fisiología , Fosforilación , Quinasas Asociadas a rho/metabolismo
8.
Cytoskeleton (Hoboken) ; 77(9): 342-350, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32885903

RESUMEN

The coordinated generation of mechanical forces by cardiac myocytes is required for proper heart function. Myofibrils are the functional contractile units of force production within individual cardiac myocytes. At the molecular level, myosin motors form cross-bridges with actin filaments and use ATP to convert chemical energy into mechanical forces. The energetic efficiency of the cross-bridge cycle is influenced by the viscous damping of myofibril contraction. The viscoelastic response of myofibrils is an emergent property of their individual mechanical components. Previous studies have implicated titin-actin interactions, cell-ECM adhesion, and microtubules as regulators of the viscoelastic response of myofibrils. Here we probed the viscoelastic response of myofibrils using laser-assisted dissection. As a proof-of-concept, we found actomyosin contractility was required to endow myofibrils with their viscoelastic response, with blebbistatin treatment resulting in decreased myofibril tension and viscous damping. Focal adhesion kinase (FAK) is a key regulator of cell-ECM adhesion, microtubule stability, and myofibril assembly. We found inhibition of FAK signaling altered the viscoelastic properties of myofibrils. Specifically, inhibition of FAK resulted in increased viscous damping of myofibril retraction following laser ablation. This damping was not associated with acute changes in the electrophysiological properties of cardiac myocytes. These results implicate FAK as a regulator of mechanical properties of myofibrils.


Asunto(s)
Adhesiones Focales/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Humanos , Viscosidad
9.
iScience ; 23(4): 101015, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32283523

RESUMEN

MCL-1 is a well-characterized inhibitor of cell death that has also been shown to be a regulator of mitochondrial dynamics in human pluripotent stem cells. We used cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) to uncover whether MCL-1 is crucial for cardiac function and survival. Inhibition of MCL-1 by BH3 mimetics resulted in the disruption of mitochondrial morphology and dynamics as well as disorganization of the actin cytoskeleton. Interfering with MCL-1 function affects the homeostatic proximity of DRP-1 and MCL-1 at the outer mitochondrial membrane, resulting in decreased functionality of hiPSC-CMs. Cardiomyocytes display abnormal cardiac performance even after caspase inhibition, supporting a nonapoptotic activity of MCL-1 in hiPSC-CMs. BH3 mimetics targeting MCL-1 are promising anti-tumor therapeutics. Progression toward using BCL-2 family inhibitors, especially targeting MCL-1, depends on understanding its canonical function not only in preventing apoptosis but also in the maintenance of mitochondrial dynamics and function.

10.
Mol Biol Cell ; 31(12): 1273-1288, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267210

RESUMEN

Forces generated by heart muscle contraction must be balanced by adhesion to the extracellular matrix (ECM) and to other cells for proper heart function. Decades of data have suggested that cell-ECM adhesions are important for sarcomere assembly. However, the relationship between cell-ECM adhesions and sarcomeres assembling de novo remains untested. Sarcomeres arise from muscle stress fibers (MSFs) that are translocating on the top (dorsal) surface of cultured cardiomyocytes. Using an array of tools to modulate cell-ECM adhesion, we established a strong positive correlation between the extent of cell-ECM adhesion and sarcomere assembly. On the other hand, we found a strong negative correlation between the extent of cell-ECM adhesion and the rate of MSF translocation, a phenomenon also observed in nonmuscle cells. We further find a conserved network architecture that also exists in nonmuscle cells. Taken together, our results show that cell-ECM adhesions mediate coupling between the substrate and MSFs, allowing their maturation into sarcomere-containing myofibrils.


Asunto(s)
Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Fibras de Estrés/metabolismo , Actinas/metabolismo , Actinas/fisiología , Técnicas de Cultivo de Célula/métodos , Uniones Célula-Matriz/fisiología , Matriz Extracelular/fisiología , Humanos , Miocitos Cardíacos/fisiología , Miofibrillas/fisiología , Sarcómeros/fisiología , Fibras de Estrés/fisiología
11.
Cell Rep ; 31(1): 107477, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268086

RESUMEN

The mechanical properties of the actin cortex regulate shape changes during cell division, cell migration, and tissue morphogenesis. We show that modulation of myosin II (MII) filament composition allows tuning of surface tension at the cortex to maintain cell shape during cytokinesis. Our results reveal that MIIA generates cortex tension, while MIIB acts as a stabilizing motor and its inclusion in MII hetero-filaments reduces cortex tension. Tension generation by MIIA drives faster cleavage furrow ingression and bleb formation. We also show distinct roles for the motor and tail domains of MIIB in maintaining cytokinetic fidelity. Maintenance of cortical stability by the motor domain of MIIB safeguards against shape instability-induced chromosome missegregation, while its tail domain mediates cortical localization at the terminal stages of cytokinesis to mediate cell abscission. Because most non-muscle contractile systems are cortical, this tuning mechanism will likely be applicable to numerous processes driven by myosin-II contractility.


Asunto(s)
Forma de la Célula/fisiología , Citocinesis/fisiología , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actinas/fisiología , Animales , Células COS , División Celular , Movimiento Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Humanos , Morfogénesis , Contracción Muscular , Miosina Tipo II/fisiología , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo
12.
Sci Rep ; 9(1): 15917, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685907

RESUMEN

Cardiac muscle cells lack regenerative capacity in postnatal mammals. A concerted effort has been made in the field to determine regulators of cardiomyocyte proliferation and identify therapeutic strategies to induce division, with the ultimate goal of regenerating heart tissue after a myocardial infarct. We sought to optimize a high throughput screening protocol to facilitate this effort. We developed a straight-forward high throughput screen with simple readouts to identify small molecules that modulate cardiomyocyte proliferation. We identify human induced pluripotent stem cell-derived cardiomyocytes (hiCMs) as a model system for such a screen, as a very small subset of hiCMs have the potential to proliferate. The ability of hiCMs to proliferate is density-dependent, and cell density has no effect on the outcome of proliferation: cytokinesis or binucleation. Screening a compound library revealed many regulators of proliferation and cell death. We provide a comprehensive and flexible screening procedure and cellular phenotype information for each compound. We then provide an example of steps to follow after this screen is performed, using three of the identified small molecules at various concentrations, further implicating their target kinases in cardiomyocyte proliferation. This screening platform is flexible and cost-effective, opening the field of cardiovascular cell biology to laboratories without substantial funding or specialized training, thus diversifying this scientific community.


Asunto(s)
Proliferación Celular , Ensayos Analíticos de Alto Rendimiento/métodos , Miocitos Cardíacos/citología , Animales , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Citocinesis , Ensayos Analíticos de Alto Rendimiento/instrumentación , Células Madre Pluripotentes Inducidas/citología , Antígeno Ki-67/metabolismo , Ratones , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Fenotipo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
13.
Cell ; 177(2): 428-445.e18, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951670

RESUMEN

The heterogeneity of small extracellular vesicles and presence of non-vesicular extracellular matter have led to debate about contents and functional properties of exosomes. Here, we employ high-resolution density gradient fractionation and direct immunoaffinity capture to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material. Extracellular RNA, RNA-binding proteins, and other cellular proteins are differentially expressed in exosomes and non-vesicle compartments. Argonaute 1-4, glycolytic enzymes, and cytoskeletal proteins were not detected in exosomes. We identify annexin A1 as a specific marker for microvesicles that are shed directly from the plasma membrane. We further show that small extracellular vesicles are not vehicles of active DNA release. Instead, we propose a new model for active secretion of extracellular DNA through an autophagy- and multivesicular-endosome-dependent but exosome-independent mechanism. This study demonstrates the need for a reassessment of exosome composition and offers a framework for a clearer understanding of extracellular vesicle heterogeneity.


Asunto(s)
Exosomas/metabolismo , Exosomas/fisiología , Anexina A1/metabolismo , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , ADN/metabolismo , Exosomas/química , Vesículas Extracelulares , Femenino , Humanos , Lisosomas/metabolismo , Masculino , Proteínas/metabolismo , ARN/metabolismo
14.
J Cell Sci ; 132(7)2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30837285

RESUMEN

Basement membranes are an ancient form of animal extracellular matrix. As important structural and functional components of tissues, basement membranes are subject to environmental damage and must be repaired while maintaining functions. Little is known about how basement membranes get repaired. This paucity stems from a lack of suitable in vivo models for analyzing such repair. Here, we show that dextran sodium sulfate (DSS) directly damages the gut basement membrane when fed to adult Drosophila DSS becomes incorporated into the basement membrane, promoting its expansion while decreasing its stiffness, which causes morphological changes to the underlying muscles. Remarkably, two days after withdrawal of DSS, the basement membrane is repaired by all measures of analysis. We used this new damage model to determine that repair requires collagen crosslinking and replacement of damaged components. Genetic and biochemical evidence indicates that crosslinking is required to stabilize the newly incorporated repaired Collagen IV rather than to stabilize the damaged Collagen IV. These results suggest that basement membranes are surprisingly dynamic.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Laminina/metabolismo , Animales , Membrana Basal/efectos de los fármacos , Sulfato de Dextran , Drosophila melanogaster , Femenino , Masculino
15.
Mol Biol Cell ; 30(9): 1051-1059, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30785846

RESUMEN

Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.


Asunto(s)
Vesícula/metabolismo , Miosina Tipo IIA no Muscular/fisiología , Actinas/metabolismo , Animales , Células COS , Membrana Celular/metabolismo , Estructuras de la Membrana Celular/metabolismo , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Chlorocebus aethiops , Citocinesis/fisiología , Citoplasma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Humanos , Miosina Tipo II/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo
16.
Curr Opin Cell Biol ; 56: 45-52, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30268802

RESUMEN

The ability to divide is a fundamental property of a living cell. The 3D orientation of cell division is essential for embryogenesis, maintenance of tissue organization and architecture, as well as controlling cell fate. Much attention has been placed on the mitotic spindle's role in placing itself along the cell's longest axis, where a shape sensing mechanism between a population of microtubules extending from mitotic centrosomes to the cell cortex occurs. However, contractile forces at the cell cortex also likely play a decisive role in determining the final placement of daughter cells following division. In this review, we discuss recent literature that describes the role of these contractile forces and how these forces could be balanced by mitotic adhesion complexes.


Asunto(s)
Adhesión Celular , Mitosis , Huso Acromático/metabolismo , Animales , Centrosoma/metabolismo , Humanos , Microtúbulos/metabolismo , Transducción de Señal
17.
Curr Biol ; 29(1): 81-92.e5, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30581023

RESUMEN

Cell adhesion, morphogenesis, mechanosensing, and muscle contraction rely on contractile actomyosin bundles, where the force is produced through sliding of bipolar myosin II filaments along actin filaments. The assembly of contractile actomyosin bundles involves registered alignment of myosin II filaments and their subsequent fusion into large stacks. However, mechanisms underlying the assembly of myosin II stacks and their physiological functions have remained elusive. Here, we identified myosin-18B, an unconventional myosin, as a stable component of contractile stress fibers. Myosin-18B co-localized with myosin II motor domains in stress fibers and was enriched at the ends of myosin II stacks. Importantly, myosin-18B deletion resulted in drastic defects in the concatenation and persistent association of myosin II filaments with each other and thus led to severely impaired assembly of myosin II stacks. Consequently, lack of myosin-18B resulted in defective maturation of actomyosin bundles from their precursors in osteosarcoma cells. Moreover, myosin-18B knockout cells displayed abnormal morphogenesis, migration, and ability to exert forces to the environment. These results reveal a critical role for myosin-18B in myosin II stack assembly and provide evidence that myosin II stacks are important for a variety of vital processes in cells.


Asunto(s)
Contracción Muscular/fisiología , Miosina Tipo II/fisiología , Miosinas/metabolismo , Fibras de Estrés/fisiología , Proteínas Supresoras de Tumor/metabolismo , Actomiosina/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos
18.
Elife ; 72018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30540249

RESUMEN

The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 µm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Fibras de Estrés/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Línea Celular , Línea Celular Tumoral , Forminas , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Fibras Musculares Esqueléticas/citología , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Interferencia de ARN
19.
Dev Cell ; 46(3): 376-387.e7, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30086304

RESUMEN

During development, neurons undergo apoptosis if they do not receive adequate trophic support from tissues they innervate or when detrimental factors activate the p75 neurotrophin receptor (p75NTR) at their axon ends. Trophic factor deprivation (TFD) or activation of p75NTR in distal axons results in a retrograde degenerative signal. However, the nature of this signal and the regulation of its transport are poorly understood. Here, we identify p75NTR intracellular domain (ICD) and histone deacetylase 1 (HDAC1) as part of a retrograde pro-apoptotic signal generated in response to TFD or ligand binding to p75NTR in sympathetic neurons. We report an unconventional function of HDAC1 in retrograde transport of a degenerative signal and its constitutive presence in sympathetic axons. HDAC1 deacetylates dynactin subunit p150Glued, which enhances its interaction with dynein. These findings define p75NTR ICD as a retrograde degenerative signal and reveal p150Glued deacetylation as a unique mechanism regulating axonal transport.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Complejo Dinactina/metabolismo , Histona Desacetilasa 1/metabolismo , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptor de Factor de Crecimiento Nervioso/metabolismo
20.
Cytoskeleton (Hoboken) ; 75(12): 545-549, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30126071

RESUMEN

How cellular contractile systems assemble has fascinated scientists for generations. The major molecule responsible for cellular force generation is the molecular motor, non-muscle myosin II (NMII). NMII molecules are organized into single myosin filaments and larger arrays of filaments called NMII stacks, which are capable of generating increasing amounts of force. The textbook model of NMII stack assembly is the Network Contraction Model, where ensembles of distinct NMII filaments condense into a NMII stack by pulling on actin filaments. While this model has been widely accepted for ~20 years, it has been difficult to test inside cells due to the small size of NMII filaments. Recently, interest in how NMII stacks form has been reinvigorated by the advent of super-resolution microscopy techniques which have afforded unprecedented resolution of NMII filaments inside cells. A number of recent publications using these techniques have called into question key aspects of the Network Contraction Model, and our understanding of how NMII stacks assemble.


Asunto(s)
Citoesqueleto de Actina , Modelos Biológicos , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Rastreo Celular , Humanos , Microscopía Electrónica , Miosina Tipo II/metabolismo , Miosina Tipo II/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA