Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 65(5): 11, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38709524

RESUMEN

Purpose: The corneal epithelium is the most highly innervated structure in the body. Previously, we reported a novel event whereby stromal axons fuse with basal epithelial cells, limiting nerve penetration into the epithelium. Although corneal-epithelial nerves undergo changes in sensitivity and distribution throughout life and in response to an obesogenic diet, it is unknown if neuronal-epithelial cell fusion is altered. Here, we sought to determine if neuronal-epithelial cell fusion frequency correlates with obesogenic diet consumption and age. Methods: Corneas were collected from C57BL/6 mice and evaluated for neuronal-epithelial cell fusion frequency using serial block-face scanning electron microscopy. To assess the correlation between diet-induced obesity and fusion frequency, 6-week-old mice were fed either a normal diet or an obesogenic diet for 10 weeks. To assess changes in fusion frequency between young and adult mice under normal dietary conditions, 9- and 24-week-old mice were used. Results: Mice fed a 10-week obesogenic diet showed 87% of central-cornea stromal nerves engaged in fusion compared with only 54% in age-matched controls (16 weeks old). In 9-week-old normal-diet animals, 48% of central-cornea stromal nerves contained fusing axons and increased to 81% at 24 weeks of age. Corneal sensitivity loss correlated with increased body weight and adiposity regardless of age and diet. Conclusions: Neuronal-epithelial cell fusion positively correlates with age and obesogenic diet consumption, and corneal nerve sensitivity loss correlates with increased body weight and adiposity, regardless of age and diet. As such, neuronal-epithelial cell fusion may play a role in corneal nerve density and sensitivity regulation.


Asunto(s)
Sustancia Propia , Epitelio Corneal , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Obesidad , Animales , Obesidad/patología , Ratones , Epitelio Corneal/patología , Sustancia Propia/inervación , Sustancia Propia/patología , Envejecimiento/fisiología , Masculino , Modelos Animales de Enfermedad , Córnea/inervación , Dieta Alta en Grasa/efectos adversos
2.
Cardiovasc Res ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38794925

RESUMEN

AIMS: The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how ß1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse. METHODS AND RESULTS: We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/ß integrins and their ligands in the embryonic heart. Integrin ß1 subunit (ß1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, and fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1, which encodes the ß1, was deleted via Nkx2.5Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of a trabecular zone but a thicker compact zone. The levels of hyaluronic acid and versican, essential for trabecular initiation, were not significantly different between control and B1KO. Instead, fibronectin, a ligand of ß1, was absent in the myocardium of B1KO hearts. Furthermore, B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. Mosaic clonal lineage tracing showed that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. CONCLUSIONS: ß1 is asymmetrically localized in the cardiomyocytes, and some of its ECM ligands are enriched along the luminal side of the myocardium, and fibronectin surrounds cardiomyocytes. ß1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 leads to loss of ß1 and fibronectin and prevents cardiomyocytes from engaging the ECM network, resulting in failure to establish tissue architecture to form trabeculae.

3.
Cont Lens Anterior Eye ; 47(3): 102165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589268

RESUMEN

PURPOSE: The human cornea is thicker in the periphery than the center and it has been suggested that this must be due to greater numbers of lamellae in the peripheral corneal stroma. The purpose of this study was to use high-resolution ultrastructural imaging to determine if the greater thickness of the peripheral cornea is due to the presence of more lamellae or if there is some other anatomical explanation. METHODS: In this study, full thickness corneas from three human donors were processed for light microscopy (LM) and transmission electron microscopy (TEM). Images were taken in three distinct stromal regions (anterior, middle, and posterior) from the central and peripheral cornea. Stromal thickness was evaluated by LM while TEM was used to evaluate numbers and thicknesses of lamellae, mean collagen fibril diameter, and mean collagen fibril density. RESULTS: Mean stromal thickness was significantly thinner in the central (415 ± 34 µm) compared to the peripheral (536 ± 29 µm) cornea (P = 0.009). Numbers of lamellae were not significantly different between central (246 ± 14) and peripheral (251 ± 14) cornea. Average lamellar thickness was not different across all regions of the cornea, except for the peripheral posterior where the lamellae were approximately 50 % thicker (P < 0.05). Collagen fibril diameters were larger in the peripheral cornea by approximately 30 % when compared to the central cornea, in all regions (P < 0.01). CONCLUSIONS: This study shows that it is an increase peripheral posterior lamellar thickness, rather than an increase in the number of lamellae, that accounts for the increase in corneal stromal thickness in the periphery of the human cornea. While collagen fibril diameters are greater throughout the peripheral stroma, the lamellae in the mid and anterior peripheral stroma are not thicker than centrally.


Asunto(s)
Córnea , Sustancia Propia , Humanos , Sustancia Propia/ultraestructura , Sustancia Propia/diagnóstico por imagen , Córnea/ultraestructura , Donantes de Tejidos , Persona de Mediana Edad , Masculino , Paquimetría Corneal , Microscopía Electrónica de Transmisión , Femenino , Adulto , Anciano , Colágeno/metabolismo , Colágeno/ultraestructura
4.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693495

RESUMEN

Aims: The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how ß1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse. Methods and Results: We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/ß integrins and their ligands in the embryonic heart. Integrin ß1 subunit (ß1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, while fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1 , which encodes the ß1 integrin subunit, was deleted via Nkx2.5 Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of trabecular zone but a thicker compact zone. The abundances of hyaluronic acid and versican are not significantly different. Instead, fibronectin, a ligand of ß1, was absent in B1KO. We examined cellular behaviors and organization via various tools. B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. The reduction of Notch1 activation was not the cause of the abnormal cellular organization in B1KO hearts. Mosaic clonal lineage tracing shows that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. Conclusions: ß1 is asymmetrically localized in the cardiomyocytes, and its ECM ligands are enriched in the luminal side of the myocardium and surrounding cardiomyocytes. ß1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 , leading to ablation of ß1 integrins, causes the dissociation of cardiomyocytes from the ECM network and failure to establish tissue architecture to form trabeculae.

5.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674448

RESUMEN

High-fat/sucrose diet feeding in mice causes loss of corneal nerve function and impairs corneal wound healing. While changing to a diet with a low fat/sugar composition and enrichments in complex carbohydrates mitigates the reduction in nerve function, it remains to be determined if it has an effect on corneal wound healing. In this study, 6-week-old C57BL/6 male mice were fed either a normal diet or a high-fat/sucrose diet for 20 weeks. A third group (diet reversal) was placed on a high-fat/sucrose diet for 10 weeks followed by a normal diet for an additional 10 weeks. A central corneal epithelial abrasion wound was created, and wound closure was monitored. Neutrophil and platelet recruitment was assessed by immunofluorescence microscopy. Mice fed the high-fat/sucrose diet-only had greater adiposity (p < 0.005) than normal diet-only fed mice; diet reversal markedly reduced adiposity. Following corneal abrasion, wound closure was delayed by ~6 h (p ≤ 0.01) and, at 30 h post-wounding, fewer neutrophils reached the wound center and fewer extravascular platelets were present at the limbus (p < 0.05). Diet restored normal wound closure and neutrophil and platelet influx in the injured cornea. These data suggest compositional changes to the diet may be an effective diet-based therapeutic strategy for maintaining or restoring corneal health.


Asunto(s)
Lesiones de la Cornea , Sacarosa , Masculino , Animales , Ratones , Sacarosa/farmacología , Ratones Endogámicos C57BL , Córnea , Lesiones de la Cornea/etiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos
6.
PLoS Negl Trop Dis ; 15(12): e0010050, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914687

RESUMEN

Ascariasis is one of the most common infections in the world and associated with significant global morbidity. Ascaris larval migration through the host's lungs is essential for larval development but leads to an exaggerated type-2 host immune response manifesting clinically as acute allergic airway disease. However, whether Ascaris larval migration can subsequently lead to chronic lung diseases remains unknown. Here, we demonstrate that a single episode of Ascaris larval migration through the host lungs induces a chronic pulmonary syndrome of type-2 inflammatory pathology and emphysema accompanied by pulmonary hemorrhage and chronic anemia in a mouse model. Our results reveal that a single episode of Ascaris larval migration through the host lungs leads to permanent lung damage with systemic effects. Remote episodes of ascariasis may drive non-communicable lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and chronic anemia in parasite endemic regions.


Asunto(s)
Anemia/parasitología , Ascariasis/parasitología , Ascaris suum/fisiología , Enfermedades Pulmonares/parasitología , Anemia/genética , Anemia/inmunología , Anemia/patología , Animales , Ascariasis/genética , Ascariasis/inmunología , Ascariasis/patología , Ascaris suum/genética , Enfermedad Crónica , Citocinas/genética , Citocinas/inmunología , Femenino , Humanos , Larva/genética , Larva/fisiología , Pulmón/inmunología , Pulmón/parasitología , Pulmón/patología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/patología , Ratones , Ratones Endogámicos BALB C
7.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298979

RESUMEN

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the ß2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


Asunto(s)
Plaquetas/fisiología , Antígenos CD18/fisiología , Degranulación de la Célula , Córnea/irrigación sanguínea , Eritrocitos/fisiología , Hiperemia/fisiopatología , Mastocitos/fisiología , Neutrófilos/fisiología , Migración Transendotelial y Transepitelial/fisiología , Vasculitis/inmunología , Vénulas/metabolismo , Animales , Antígenos CD18/deficiencia , Movimiento Celular , Quimiotaxis de Leucocito , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Epitelio Corneal/fisiología , Femenino , Hiperemia/sangre , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación , Microscopía Electrónica , Modelos Animales , Fagocitosis , Regeneración/fisiología , Vasculitis/sangre , Vénulas/patología , Cicatrización de Heridas/fisiología
9.
J Biol Chem ; 296: 100268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837726

RESUMEN

Degranulation, a fundamental effector response from mast cells (MCs) and platelets, is an example of regulated exocytosis. This process is mediated by SNARE proteins and their regulators. We have previously shown that several of these proteins are essential for exocytosis in MCs and platelets. Here, we assessed the role of the SNARE protein SNAP23 using conditional knockout mice, in which SNAP23 was selectively deleted from either the megakaryocyte/platelet or connective tissue MC lineages. We found that removal of SNAP23 in platelets results in severe defects in degranulation of all three platelet secretory granule types, i.e., alpha, dense, and lysosomal granules. The mutation also induces thrombocytopenia, abnormal platelet morphology and activation, and reduction in the number of alpha granules. Therefore, the degranulation defect might not be secondary to an intrinsic failure of the machinery mediating regulated exocytosis in platelets. When we removed SNAP23 expression in MCs, there was a complete developmental failure in vitro and in vivo. The developmental defects in platelets and MCs and the abnormal translocation of membrane proteins to the surface of platelets indicate that SNAP23 is also involved in constitutive exocytosis in these cells. The MC conditional deletant animals lacked connective tissue MCs, but their mucosal MCs were normal and expanded in response to an antigenic stimulus. We used this mouse to show that connective tissue MCs are required and mucosal MCs are not sufficient for an anaphylactic response.


Asunto(s)
Anafilaxia/inmunología , Plaquetas/inmunología , Tejido Conectivo/inmunología , Mastocitos/inmunología , Proteínas Qb-SNARE/inmunología , Proteínas Qc-SNARE/inmunología , Anafilaxia/genética , Anafilaxia/patología , Animales , Plaquetas/patología , Tejido Conectivo/patología , Exocitosis/genética , Exocitosis/inmunología , Mastocitos/patología , Ratones , Ratones Noqueados , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Vesículas Secretoras/genética , Vesículas Secretoras/inmunología
10.
J Vis Exp ; (169)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33843931

RESUMEN

Serial block-face scanning electron microscopy (SBF-SEM) allows for the collection of hundreds to thousands of serially-registered ultrastructural images, offering an unprecedented three-dimensional view of tissue microanatomy. While SBF-SEM has seen an exponential increase in use in recent years, technical aspects such as proper tissue preparation and imaging parameters are paramount for the success of this imaging modality. This imaging system benefits from the automated nature of the device, allowing one to leave the microscope unattended during the imaging process, with the automated collection of hundreds of images possible in a single day. However, without appropriate tissue preparation cellular ultrastructure can be altered in such a way that incorrect or misleading conclusions might be drawn. Additionally, images are generated by scanning the block-face of a resin-embedded biological sample and this often presents challenges and considerations that must be addressed. The accumulation of electrons within the block during imaging, known as "tissue charging," can lead to a loss of contrast and an inability to appreciate cellular structure. Moreover, while increasing electron beam intensity/voltage or decreasing beam-scanning speed can increase image resolution, this can also have the unfortunate side effect of damaging the resin block and distorting subsequent images in the imaging series. Here we present a routine protocol for the preparation of biological tissue samples that preserves cellular ultrastructure and diminishes tissue charging. We also provide imaging considerations for the rapid acquisition of high-quality serial-images with minimal damage to the tissue block.


Asunto(s)
Cara/diagnóstico por imagen , Microscopía Electrónica de Rastreo/métodos , Animales
11.
J Vis Exp ; (178)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35037655

RESUMEN

The cornea is critical for vision, accounting for about two-thirds of the refractive power of the eye. Crucial to the role of the cornea in vision is its transparency. However, due to its external position, the cornea is highly susceptible to a wide variety of injuries that can lead to the loss of corneal transparency and eventual blindness. Efficient corneal wound healing in response to these injuries is pivotal for maintaining corneal homeostasis and preservation of corneal transparency and refractive capabilities. In events of compromised corneal wound healing, the cornea becomes vulnerable to infections, ulcerations, and scarring. Given the fundamental importance of corneal wound healing to the preservation of corneal transparency and vision, a better understanding of the normal corneal wound healing process is a prerequisite to understanding impaired corneal wound healing associated with infection and disease. Toward this goal, murine models of corneal wounding have proven useful in furthering our understanding of the corneal wound healing mechanisms operating under normal physiological conditions. Here, a protocol for creating a central corneal epithelial abrasion in mouse using a trephine and a blunt golf club spud is described. In this model, a 2 mm diameter circular trephine, centered over the cornea, is used to demarcate the wound area. The golf club spud is used with care to debride the epithelium and create a circular wound without damaging the corneal epithelial basement membrane. The resulting inflammatory response proceeds as a well-characterized cascade of cellular and molecular events that are critical for efficient wound healing. This simple corneal wound healing model is highly reproducible and well-published and is now being used to evaluate compromised corneal wound healing in the context of disease.


Asunto(s)
Lesiones de la Cornea , Epitelio Corneal , Animales , Membrana Basal , Cicatriz/patología , Córnea/patología , Lesiones de la Cornea/patología , Ratones , Cicatrización de Heridas/fisiología
12.
Nutrients ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011018

RESUMEN

Mice fed a high fat diet (HFD) ab libitum show corneal dysregulation, as evidenced by decreased sensitivity and impaired wound healing. Time-restricted (TR) feeding can effectively mitigate the cardiometabolic effects of an HFD. To determine if TR feeding attenuates HFD-induced corneal dysregulation, this study evaluated 6-week-old C57BL/6 mice fed an ad libitum normal diet (ND), an ad libitum HFD, or a time-restricted (TR) HFD for 10 days. Corneal sensitivity was measured using a Cochet-Bonnet aesthesiometer. A corneal epithelial abrasion wound was created, and wound closure was monitored for 30 h. Neutrophil and platelet recruitment were assessed by immunofluorescence microscopy. TR HFD fed mice gained less weight (p < 0.0001), had less visceral fat (p = 0.015), and had reduced numbers of adipose tissue macrophages and T cells (p < 0.05) compared to ad libitum HFD fed mice. Corneal sensitivity was reduced in ad libitum HFD and TR HFD fed mice compared to ad libitum ND fed mice (p < 0.0001). Following epithelial abrasion, corneal wound closure was delayed (~6 h), and neutrophil and platelet recruitment was dysregulated similarly in ad libitum and TR HFD fed mice. TR HFD feeding appears to mitigate adipose tissue inflammation and adiposity, while the cornea remains sensitive to the pathologic effects of HFD feeding.


Asunto(s)
Córnea/patología , Dieta Alta en Grasa/efectos adversos , Conducta Alimentaria/fisiología , Síndrome Metabólico/etiología , Tejido Adiposo/metabolismo , Animales , Plaquetas/patología , Córnea/inervación , Córnea/fisiopatología , Grasa Intraabdominal/metabolismo , Masculino , Síndrome Metabólico/patología , Ratones Endogámicos C57BL , Neutrófilos/patología , Obesidad/etiología , Obesidad/patología , Factores de Tiempo , Cicatrización de Heridas
13.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233559

RESUMEN

BACKGROUND: Dyslipidemia may be linked to meibomian gland dysfunction (MGD) and altered meibum lipid composition. The purpose was to determine if plasma and meibum cholesteryl esters (CE), triglycerides (TG), ceramides (Cer) and sphingomyelins (SM) change in a mouse model of diet-induced obesity where mice develop dyslipidemia. METHODS: Male C57/BL6 mice (8/group, age = 6 wks) were fed a normal (ND; 15% kcal fat) or an obesogenic high-fat diet (HFD; 42% kcal fat) for 10 wks. Tear production was measured and meibography was performed. Body and epididymal adipose tissue (eAT) weights were determined. Nano-ESI-MS/MS and LC-ESI-MS/MS were used to detect CE, TG, Cer and SM species. Data were analyzed by principal component analysis, Pearson's correlation and unpaired t-tests adjusted for multiple comparisons; significance set at p ≤ 0.05. RESULTS: Compared to ND mice, HFD mice gained more weight and showed heavier eAT and dyslipidemia with higher levels of plasma CE, TG, Cer and SM. HFD mice had hypertrophic meibomian glands, increased levels of lipid species acylated by saturated fatty acids in plasma and meibum and excessive tear production. CONCLUSIONS: The majority of meibum lipid species with saturated fatty acids increased with HFD feeding with evidence of meibomian gland hypertrophy and excessive tearing. The dyslipidemia is associated with altered meibum composition, a key feature of MGD.


Asunto(s)
Dislipidemias/metabolismo , Hipertrofia/metabolismo , Glándulas Tarsales/metabolismo , Obesidad/metabolismo , Lágrimas/química , Tejido Adiposo/química , Tejido Adiposo/metabolismo , Animales , Ceramidas/clasificación , Ceramidas/aislamiento & purificación , Ceramidas/metabolismo , Ésteres del Colesterol/clasificación , Ésteres del Colesterol/aislamiento & purificación , Ésteres del Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Dislipidemias/etiología , Dislipidemias/patología , Epidídimo/química , Epidídimo/metabolismo , Humanos , Hipertrofia/etiología , Hipertrofia/patología , Masculino , Glándulas Tarsales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/patología , Análisis de Componente Principal , Esfingomielinas/clasificación , Esfingomielinas/aislamiento & purificación , Esfingomielinas/metabolismo , Lágrimas/metabolismo , Triglicéridos/clasificación , Triglicéridos/aislamiento & purificación , Triglicéridos/metabolismo
14.
Invest Ophthalmol Vis Sci ; 61(13): 16, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33170205

RESUMEN

Purpose: To determine the temporal effects of dexamethasone (DEX) and glucocorticoid-induced matrix (GIM) on integrins/integrin adhesomes, caveolins, cytoskeletal-related proteins, and stiffness in human trabecular meshwork (hTM) cells. Methods: Primary hTM cells were plated on plastic dishes (TCP), treated with vehicle (Veh) or 100 nM DEX in 1% serum media for 1, 3, 5, and 7 day(s). Concurrently, hTM cells were also plated on vehicle control matrices (VehMs) and GIMs for similar time points; VehMs and GIMs had been generated from chronic cultures of Veh-/DEX-stimulated hTM cells and characterized biochemically. Subsets of cells prior to plating on TCP or VehMs / GIMs served as baseline. Protein expression of mechanoreceptors, cytoskeletal-related proteins, and elastic moduli of hTM cells were determined. Results: Compared with Veh, DEX temporally overexpressed αV, ß3, and ß5 integrins from day 3 to day 7, and integrin linked kinase at day 7, in hTM cells. However, DEX decreased ß1 integrin at day 1 and day 7, while increasing Cavin1 at day 7, in a time-independent manner. Further, DEX temporally upregulated α-smooth muscle actin(α-SMA) and RhoA at day 7 and day 5, respectively; while temporally downregulating Cdc42 at day 3 and day 7 in hTM cells. Conversely, GIM showed increased immunostaining of fibronectin extra-domain A and B isoforms. Compared with VehM, GIM temporally increased αV integrin, Cavin1, and RhoA from day 3 to day 7, at day 3 and day 7, and at day 5, respectively, in hTM cells. Further, GIM overexpressed α-SMA at day 3 and day 7, and stiffened hTM cells from day 1 to day 7, in a time-independent fashion. Conclusions: Our data highlight crucial mechanoreceptors, integrin adhesomes, and actin-related proteins that may temporally sustain fibrotic phenotypes precipitated by DEX and/or GIM in hTM cells.


Asunto(s)
Caveolinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dexametasona/farmacología , Glucocorticoides/farmacología , Integrinas/metabolismo , Malla Trabecular/efectos de los fármacos , Actinas/metabolismo , Anciano , Fenómenos Biomecánicos/fisiología , Western Blotting , Células Cultivadas , Elasticidad/fisiología , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Malla Trabecular/metabolismo
15.
J Cardiovasc Dev Dis ; 7(4)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33022937

RESUMEN

In the last two decades, the zebrafish has emerged as an important model species for heart regeneration studies. Various approaches to model loss of cardiac myocytes and myocardial infarction in the zebrafish have been devised, and have included resection, genetic ablation, and cryoinjury. However, to date, the response of the zebrafish ventricle to cautery injury has not been reported. Here, we describe a simple and reproducible method using cautery injury via a modified nichrome inoculating needle as a probe to model myocardial infarction in the zebrafish ventricle. Using light and electron microscopy, we show that cardiac cautery injury is attended by significant inflammatory cell infiltration, accumulation of collagen in the injured area, and the reconstitution of the ventricular myocardium. Additionally, we document the ablation of cardiac nerve fibers, and report that the re-innervation of the injured zebrafish ventricle is protracted, compared to other repair processes that accompany the regeneration of the cauterized ventricle. Taken together, our study demonstrates that cautery injury is a simple and effective means for generating necrotic tissue and eliciting a remodeling and regenerative response in the zebrafish heart. This approach may serve as an important tool in the methods toolbox for regeneration studies in the zebrafish.

17.
PLoS One ; 15(9): e0238750, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32886728

RESUMEN

PURPOSE: The purpose of this study was to use a mouse model of diet-induced obesity to determine if corneal dysfunction begins prior to the onset of sustained hyperglycemia and if the dysfunction is ameliorated by diet reversal. METHODS: Six-week-old male C57BL/6 mice were fed a high fat diet (HFD) or a normal diet (ND) for 5-15 weeks. Diet reversal (DiR) mice were fed a HFD for 5 weeks, followed by a ND for 5 or 10 weeks. Corneal sensitivity was determined using aesthesiometry. Corneal cytokine expression was analyzed using a 32-plex Luminex assay. Excised corneas were prepared for immunofluorescence microscopy to evaluate diet-induced changes and wound healing. For wounding studies, mice were fed a HFD or a ND for 10 days prior to receiving a central 2mm corneal abrasion. RESULTS: After 10 days of HFD consumption, corneal sensitivity declined. By 10 weeks, expression of corneal inflammatory mediators increased and nerve density declined. While diet reversal restored nerve density and sensitivity, the corneas remained in a heightened inflammatory state. After 10 days on the HFD, corneal circadian rhythms (limbal neutrophil accumulation, epithelial cell division and Rev-erbα expression) were blunted. Similarly, leukocyte recruitment after wounding was dysregulated and accompanied by delays in wound closure and nerve recovery. CONCLUSION: In the mouse, obesogenic diet consumption results in corneal dysfunction that precedes the onset of sustained hyperglycemia. Diet reversal only partially ameliorated this dysfunction, suggesting a HFD diet may have a lasting negative impact on corneal health that is resistant to dietary therapeutic intervention.


Asunto(s)
Córnea/fisiopatología , Dieta Alta en Grasa/efectos adversos , Hiperglucemia/fisiopatología , Obesidad/inducido químicamente , Obesidad/complicaciones , Animales , Composición Corporal/efectos de los fármacos , Córnea/efectos de los fármacos , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Hiperglucemia/complicaciones , Leucocitos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Cicatrización de Heridas/efectos de los fármacos
18.
J Am Heart Assoc ; 9(2): e014008, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31928155

RESUMEN

Background The circulating level of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) is a valuable biomarker of acute myocardial infarction (AMI). The most electronegative low-density lipoprotein, L5, signals through LOX-1 to trigger atherogenesis. We examined the characteristics of LOX-1 and the role of L5 in aspirated coronary thrombi of AMI patients. Methods and Results Intracoronary thrombi were aspirated by performing interventional thrombosuction in patients with ST-segment-elevation myocardial infarction (STEMI; n=32) or non-ST-segment-elevation myocardial infarction (n=12). LOX-1 level and the ratio of sLOX-1 to membrane-bound LOX-1 were higher in thrombi of STEMI patients than in those of non-ST-segment-elevation myocardial infarction patients. In all aspirated thrombi, LOX-1 colocalized with apoB100. When we explored the role of L5 in AMI, deconvolution microscopy showed that particles of L5 but not L1 (the least electronegative low-density lipoprotein) quickly formed aggregates prone to retention in thrombi. Treating human monocytic THP-1 cells with L5 or L1 showed that L5 induced cellular adhesion and promoted the differentiation of monocytes into macrophages in a dose-dependent manner. In a second cohort of AMI patients, the L5 percentage and plasma concentration of sLOX-1 were higher in STEMI patients (n=33) than in non-ST-segment-elevation myocardial infarction patients (n=25), and sLOX-1 level positively correlated with L5 level in AMI patients. Conclusions The level of LOX-1 and the ratio of sLOX-1 to membrane-bound LOX-1 in aspirated thrombi, as well as the circulating level of sLOX-1 were higher in STEMI patients than in non-ST-segment-elevation myocardial infarction patients. L5 may play a role in releasing a high level of sLOX-1 into the circulation of STEMI patients.


Asunto(s)
Membrana Celular/metabolismo , Trombosis Coronaria/metabolismo , Infarto del Miocardio con Elevación del ST/metabolismo , Receptores Depuradores de Clase E/metabolismo , Apolipoproteína B-100/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Trombosis Coronaria/terapia , Femenino , Humanos , Lipoproteínas LDL/análisis , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Infarto del Miocardio con Elevación del ST/terapia , Receptores Depuradores de Clase E/sangre , Succión , Células THP-1 , Trombectomía , Regulación hacia Arriba
19.
J Neurosci Res ; 98(2): 312-324, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31630455

RESUMEN

Recent advances in three-dimensional (3D) fluorescence microscopy offer the ability to image the entire vascular network in entire organs, or even whole animals. However, these imaging modalities rely on either endogenous fluorescent reporters or involved immunohistochemistry protocols, as well as optical clearing of the tissue and refractive index matching. Conversely, X-ray-based 3D imaging modalities, such as micro CT, can image non-transparent samples, at high resolution, without requiring complicated or expensive immunolabeling and clearing protocols, or fluorescent reporters. Here, we compared two "homemade" barium-based contrast agents to the field standard, lead-containing Microfil, for micro-computed tomography (micro CT) imaging of the adult mouse cerebrovasculature. The perfusion pressure required for uniform vessel filling was significantly lower with the barium-based contrast agents compared to the polymer-based Microfil. Accordingly, the barium agents showed no evidence of vascular distension or rupture, common problems associated with Microfil. Compellingly, perfusion of an aqueous BaCl2 /gelatin mixture yielded equal or superior visualization of the cerebrovasculature by micro CT compared to Microfil. However, phosphate-containing buffers and fixatives were incompatible with BaCl2 due to the formation of unwanted precipitates. X-ray attenuation of the vessels also decreased overtime, as the BaCl2 appeared to gradually diffuse into surrounding tissues. A second, unique formulation composed of BaSO4 microparticles, generated in-house by mixing BaCl2 and MgSO4 , suffered none of these drawbacks. These microparticles, however, were unable to pass small diameter capillary vessels, conveniently labeling only the arterial cerebrovasculature. In summary, we present an affordable, robust, low pressure, non-toxic, and straightforward methodology for 3D visualization of the cerebrovasculature.


Asunto(s)
Bario , Circulación Cerebrovascular/fisiología , Imagenología Tridimensional/métodos , Microtomografía por Rayos X/métodos , Animales , Medios de Contraste , Ratones
20.
PLoS One ; 14(11): e0224434, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31721785

RESUMEN

The cornea is the most highly innervated tissue in the body. It is generally accepted that corneal stromal nerves penetrate the epithelial basal lamina giving rise to intra-epithelial nerves. During the course of a study wherein we imaged corneal nerves in mice, we observed a novel neuronal-epithelial cell interaction whereby nerves approaching the epithelium in the cornea fused with basal epithelial cells, such that their plasma membranes were continuous and the neuronal axoplasm freely abutted the epithelial cytoplasm. In this study we sought to determine the frequency, distribution, and morphological profile of neuronal-epithelial cell fusion events within the cornea. Serial electron microscopy images were obtained from the anterior stroma in the paralimbus and central cornea of 8-10 week old C57BL/6J mice. We found evidence of a novel alternative behavior involving a neuronal-epithelial interaction whereby 42.8% of central corneal nerve bundles approaching the epithelium contain axons that fuse with basal epithelial cells. The average surface-to-volume ratio of a penetrating nerve was 3.32, while the average fusing nerve was smaller at 1.39 (p ≤ 0.0001). Despite this, both neuronal-epithelial cell interactions involve similarly sized discontinuities in the basal lamina. In order to verify the plasma membrane continuity between fused neurons and epithelial cells we used the lipophilic membrane tracer DiI. The majority of corneal nerves were labeled with DiI after application to the trigeminal ganglion and, consistent with our ultrastructural observations, fusion sites recognized as DiI-labeled basal epithelial cells were located at points of stromal nerve termination. These studies provide evidence that neuronal-epithelial cell fusion is a cell-cell interaction that occurs primarily in the central cornea, and fusing nerve bundles are morphologically distinct from penetrating nerve bundles. This is, to our knowledge, the first description of neuronal-epithelial cell fusion in the literature adding a new level of complexity to the current understanding of corneal innervation.


Asunto(s)
Córnea/inervación , Epitelio Corneal/citología , Neuronas/citología , Animales , Fusión Celular , Masculino , Ratones , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA