Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
JMIR Med Inform ; 10(3): e26499, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35311685

RESUMEN

BACKGROUND: Self-reporting digital apps provide a way of remotely monitoring and managing patients with chronic conditions in the community. Leveraging the data collected by these apps in prognostic models could provide increased personalization of care and reduce the burden of care for people who live with chronic conditions. This study evaluated the predictive ability of prognostic models for the prediction of acute exacerbation events in people with chronic obstructive pulmonary disease by using data self-reported to a digital health app. OBJECTIVE: The aim of this study was to evaluate if data self-reported to a digital health app can be used to predict acute exacerbation events in the near future. METHODS: This is a retrospective study evaluating the use of symptom and chronic obstructive pulmonary disease assessment test data self-reported to a digital health app (myCOPD) in predicting acute exacerbation events. We include data from 2374 patients who made 68,139 self-reports. We evaluated the degree to which the different variables self-reported to the app are predictive of exacerbation events and developed both heuristic and machine learning models to predict whether the patient will report an exacerbation event within 3 days of self-reporting to the app. The model's predictive ability was evaluated based on self-reports from an independent set of patients. RESULTS: Users self-reported symptoms, and standard chronic obstructive pulmonary disease assessment tests displayed correlation with future exacerbation events. Both a baseline model (area under the receiver operating characteristic curve [AUROC] 0.655, 95% CI 0.689-0.676) and a machine learning model (AUROC 0.727, 95% CI 0.720-0.735) showed moderate ability in predicting exacerbation events, occurring within 3 days of a given self-report. Although the baseline model obtained a fixed sensitivity and specificity of 0.551 (95% CI 0.508-0.596) and 0.759 (95% CI 0.752-0.767) respectively, the sensitivity and specificity of the machine learning model can be tuned by dichotomizing the continuous predictions it provides with different thresholds. CONCLUSIONS: Data self-reported to health care apps designed to remotely monitor patients with chronic obstructive pulmonary disease can be used to predict acute exacerbation events with moderate performance. This could increase personalization of care by allowing preemptive action to be taken to mitigate the risk of future exacerbation events.

2.
Sci Rep ; 11(1): 23017, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34837021

RESUMEN

A key task of emergency departments is to promptly identify patients who require hospital admission. Early identification ensures patient safety and aids organisational planning. Supervised machine learning algorithms can use data describing historical episodes to make ahead-of-time predictions of clinical outcomes. Despite this, clinical settings are dynamic environments and the underlying data distributions characterising episodes can change with time (data drift), and so can the relationship between episode characteristics and associated clinical outcomes (concept drift). Practically this means deployed algorithms must be monitored to ensure their safety. We demonstrate how explainable machine learning can be used to monitor data drift, using the COVID-19 pandemic as a severe example. We present a machine learning classifier trained using (pre-COVID-19) data, to identify patients at high risk of admission during an emergency department attendance. We then evaluate our model's performance on attendances occurring pre-pandemic (AUROC of 0.856 with 95%CI [0.852, 0.859]) and during the COVID-19 pandemic (AUROC of 0.826 with 95%CI [0.814, 0.837]). We demonstrate two benefits of explainable machine learning (SHAP) for models deployed in healthcare settings: (1) By tracking the variation in a feature's SHAP value relative to its global importance, a complimentary measure of data drift is found which highlights the need to retrain a predictive model. (2) By observing the relative changes in feature importance emergent health risks can be identified.


Asunto(s)
COVID-19 , Hospitalización , Humanos , Aprendizaje Automático , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...