RESUMEN
Biological therapies, such as monoclonal antibodies (mAbs) that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1) whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2) the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC), but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers.
RESUMEN
Protein phosphorylation is frequently used as an indicator of cellular signaling activity. Elevated phosphorylation of tyrosine kinase receptors plays an important role in cancer pathogenesis. However, phosphoproteins are usually poorly preserved in clinical tissue samples that are routinely fixed in 10% formalin. Nonetheless, in oncology clinical trials, use of phosphoproteins as biomarkers has been considered to be of great value in evaluating the effectiveness of a given drug candidate. Therefore, it is worthy of investigating whether alternative fixatives would improve the preservation of phosphoproteins in tissue. We compared the IHC staining of a number of phosphoproteins in xenograft and human surgical tumor tissues fixed in three different fixatives: 10% formalin, 4% paraformaldehyde (PFA), and Streck's tissue fixative (STF). We found that STF significantly enhanced the staining intensity of phosphoproteins compared with 10% formalin or 4% PFA. STF fixative also showed superiority of preservation of phosphoproteins in human surgical samples. Our results indicate that the choice of fixative could significantly affect the usability of clinical tissue samples for evaluating phosphoprotein by IHC.
Asunto(s)
Biomarcadores de Tumor/análisis , Fijadores , Neoplasias/química , Fosfoproteínas/análisis , Animales , Neoplasias de la Mama/química , Neoplasias del Colon/química , Interpretación Estadística de Datos , Femenino , Formaldehído , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/química , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Polímeros , Trasplante HeterólogoRESUMEN
Lack of virus specific antibody response is commonly observed in both HIV-1-infected humans and SIV-infected monkeys with rapid disease progression. However, the mechanisms underlying this important observation still remain unclear. In a titration study of a SIVmac239 viral stock, three out of six animals with viral inoculation rapidly progressed to AIDS within 5 months. Unexpectedly, there was no obvious depletion of CD4(+) T cells in both peripheral and lymph node (LN) compartments in these animals. Instead, progressive depletion of proliferating B cells and disruption of the follicular dendritic cell (FDC) network in germinal centers (GC) was evident in the samples collected at as early as 20 days after viral challenge. This coincided with undetectable, or weak and transient, virus-specific antibody responses over the course of infection. In situ hybridization of SIV RNA in the LN samples revealed a high frequency of SIV productively infected cells and large amounts of accumulated viral RNA in the GCs in these animals. Early severe depletion of GC proliferating B cells and disruption of the FDC network may thus result in an inability to mount a virus-specific antibody response in rapid progressors, which has been shown to contribute to accelerated disease progression of SIV infection.
Asunto(s)
Ganglios Linfáticos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios , Animales , Anticuerpos Antivirales/sangre , Linfocitos B/citología , Biopsia , Recuento de Células , Progresión de la Enfermedad , Centro Germinal/inmunología , Centro Germinal/virología , Hiperplasia/patología , Ganglios Linfáticos/patología , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/diagnóstico , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga ViralRESUMEN
Induction of multispecific, functional CD4+ and CD8+ T cells is the immunological hallmark of acute self-limiting hepatitis C virus (HCV) infection in humans. In the present study, we showed that gene electrotransfer (GET) of a novel candidate DNA vaccine encoding an optimized version of the nonstructural region of HCV (from NS3 to NS5B) induced substantially more potent, broad, and long-lasting CD4+ and CD8+ cellular immunity than naked DNA injection in mice and in rhesus macaques as measured by a combination of assays, including IFN-gamma ELISPOT, intracellular cytokine staining, and cytotoxic T cell assays. A protocol based on three injections of DNA with GET induced a substantially higher CD4+ T cell response than an adenovirus 6-based viral vector encoding the same Ag. To better evaluate the immunological potency and probability of success of this vaccine, we have immunized two chimpanzees and have compared vaccine-induced cell-mediated immunity to that measured in acute self-limiting infection in humans. GET of the candidate HCV vaccine led to vigorous, multispecific IFN-gamma+CD8+ and CD4+ T lymphocyte responses in chimpanzees, which were comparable to those measured in five individuals that cleared spontaneously HCV infection. These data support the hypothesis that T cell responses elicited by the present strategy could be beneficial in prophylactic vaccine approaches against HCV.
Asunto(s)
Electroporación , Técnicas de Transferencia de Gen , Hepacivirus/genética , Hepacivirus/inmunología , Vacunas de ADN/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Línea Celular , Codón/administración & dosificación , Codón/inmunología , Femenino , Humanos , Inmunidad Celular/genética , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Pan troglodytes , Plásmidos/administración & dosificación , Plásmidos/inmunología , Vacunas de ADN/administración & dosificación , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunologíaRESUMEN
This work explores the structural compactness of depletion-induced particle flocs with respect to the molecular weight of nonadsorbing polymer flocculants. Small-angle static light scattering was used to monitor the structural characteristics of the flocs, which were formed by the addition of nonadsorbing poly(acrylic acids) to a stable colloidal polystyrene latex dispersion. It was found that the floc mass fractal dimension, considered to be a measure of structural compactness, was dependent upon both the molecular weight and the concentration of the polyacid. In particular, reducing the molecular weight of the polymer at a fixed polyacid concentration resulted in higher mass fractal dimensions, despite the highly polydisperse nature of the polymer samples. This structural behavior was attributed to the lower particle sticking efficiencies upon collision. This reduced sticking ability is the result of the shallowing in the secondary potential energy well with decreasing polymer chain length, which was directly supported by atomic force microscopy data. Our results suggest that the formation of a shallower attraction well with a lower molecular weight nonadsorbing polymer is the result of the insufficiency of the increased osmotic pressure to counter-balance the short-ranged nature of the depletion interaction.