Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Curr Opin Biotechnol ; 89: 103174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126877

RESUMEN

Single-cell multi-omics and spatial technology have been widely applied to biomedical studies and recently to environmental studies. The cell size detected by single-cell omics ranges from ∼2 µm (e.g., Bacillus subtilis) to ∼120 µm (e.g., human oocytes). Simultaneous detection of single-cell multi-omics is available to human and plant tissues while limited to microbial samples. Spatial technology enables mapping the detected biomolecules in situ. The recent advances in Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging and Micro/Nanodroplet Processing in One Pot for Trace Samples for the first time allow the application of spatial multi-omics in highly heterogeneous environmental samples composed of plants, fungi, and bacteria. We envision that these technologies will continue to advance our understanding of unique cell types, their developmental trajectory, and the intercellular signaling and interaction within biological samples.


Asunto(s)
Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Proteómica/métodos , Genómica/métodos , Multiómica
2.
Anal Chem ; 96(32): 12973-12982, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39089681

RESUMEN

There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity in a cell-type-specific manner to better understand and predict the function of complex biological systems such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverage due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (microdroplet processing in one pot for trace samples), multiplexed isobaric labeling, and a nanoflow peptide fractionation approach. The integrated workflow allowed us to maximize proteome coverage of laser-isolated tissue samples containing nanogram levels of proteins. We demonstrated that the deep spatial proteomics platform can quantify more than 5000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 µm2) and differentiate unique protein abundance patterns in pancreas. Furthermore, the use of the microPOTS chip eliminated the requirement for advanced microfabrication capabilities and specialized nanoliter liquid handling equipment, making it more accessible to proteomic laboratories.


Asunto(s)
Péptidos , Proteoma , Proteómica , Humanos , Proteoma/análisis , Proteómica/métodos , Péptidos/análisis , Péptidos/química , Páncreas/metabolismo , Páncreas/química , Nanotecnología , Técnicas Analíticas Microfluídicas/instrumentación , Captura por Microdisección con Láser/métodos
3.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39211280

RESUMEN

Introduction: Obesity and gestational diabetes (GDM) are associated with adverse pregnancy outcomes and program the offspring for cardiometabolic disease in a sexually dimorphic manner. The placenta transfers lipids to the fetus and uses these substrates to support its own metabolism impacting the amount of substrate available to the growing fetus. Methods: We collected maternal plasma and placental villous tissue following elective cesarean section at term from women who were lean (pre-pregnancy BMI 18.5-24.9), obese (BMI>30) and type A2 GDM (matched to obese BMI) with male or female fetus (n=4 each group). Lipids were extracted and fatty acid composition of different lipid classes were analyzed by LC-MS/MS analysis. Significant changes in GDM vs obese, GDM vs lean, and obese vs lean were determined using t-test with a Tukey correction set at p<0.05. Results: In placental samples 436 lipids were identified, among which 85 showed significant changes. Of note only in male placentas significant decreases in C22:6 - docosahexaenoic acid (DHA) in phosphatidylcholine (PC) and triglyceride lipid species were seen when comparing tissue from GDM women to lean. In maternal plasma we observed no effect of obesity. GDM or fetal sex. Conclusion: This is the first study assessing fatty acid composition of lipids in matched maternal plasma and placental tissue from lean, obese, and GDM women stratified by fetal sex. It highlights how GDM affects distribution of fatty acids in lipid classes changes in a sexually dimorphic manner in the placenta.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39013167

RESUMEN

Mass spectrometry is broadly employed to study complex molecular mechanisms in various biological and environmental fields, enabling 'omics' research such as proteomics, metabolomics, and lipidomics. As study cohorts grow larger and more complex with dozens to hundreds of samples, the need for robust quality control (QC) measures through automated software tools becomes paramount to ensure the integrity, high quality, and validity of scientific conclusions from downstream analyses and minimize the waste of resources. Since existing QC tools are mostly dedicated to proteomics, automated solutions supporting metabolomics are needed. To address this need, we developed the software PeakQC, a tool for automated QC of MS data that is independent of omics molecular types (i.e., omics-agnostic). It allows automated extraction and inspection of peak metrics of precursor ions (e.g., errors in mass, retention time, arrival time) and supports various instrumentations and acquisition types, from infusion experiments or using liquid chromatography and/or ion mobility spectrometry front-end separations and with/without fragmentation spectra from data-dependent or independent acquisition analyses. Diagnostic plots for fragmentation spectra are also generated. Here, we describe and illustrate PeakQC's functionalities using different representative data sets, demonstrating its utility as a valuable tool for enhancing the quality and reliability of omics mass spectrometry analyses.

5.
Proteomics ; 24(16): e2400025, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38895962

RESUMEN

Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 min. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals who underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.


Asunto(s)
Cromatografía en Gel , Vesículas Extracelulares , Proteómica , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografía en Gel/métodos , Proteómica/métodos , Biomarcadores/sangre
6.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565538

RESUMEN

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Asunto(s)
Multiómica , Virosis , Virus , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Metabolómica , Proteómica/métodos , Virosis/inmunología , Interacciones Huésped-Patógeno
7.
Proteomics ; 24(12-13): e2200436, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438732

RESUMEN

Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.


Asunto(s)
Algoritmos , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Programas Informáticos , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Metabolómica/métodos , Humanos
8.
Nat Chem Biol ; 20(8): 1033-1043, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38302607

RESUMEN

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.


Asunto(s)
Lignina , Consorcios Microbianos , Lignina/metabolismo , Consorcios Microbianos/fisiología , Animales , Hormigas/metabolismo , Hormigas/microbiología , Ecosistema , Proteómica/métodos , Proteoma/metabolismo , Simbiosis
9.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293231

RESUMEN

Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 minutes. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals that underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV-proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.

10.
J Proteome Res ; 23(8): 2970-2985, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38236019

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Genotipo , Lipidómica , Proteómica , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Proteómica/métodos , Femenino , Masculino , Anciano , Apolipoproteínas E/genética , Encéfalo/metabolismo , Encéfalo/patología , Anciano de 80 o más Años , Apolipoproteína E4/genética , Cerebelo/metabolismo , Cerebelo/patología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Alelos
11.
Metab Eng ; 80: 163-172, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778408

RESUMEN

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Asunto(s)
Ácido Aconítico , Aspergillus , Ácido Aconítico/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica , Succinatos/metabolismo
12.
Mil Med Res ; 10(1): 48, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853489

RESUMEN

BACKGROUND: Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS: To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS: Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION: This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.


Asunto(s)
Ejercicio Físico , Multiómica , Humanos , Ejercicio Físico/fisiología , Citocinas
13.
Microb Cell Fact ; 22(1): 144, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537586

RESUMEN

Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.


Asunto(s)
Proteómica , Xilosa , Xilosa/metabolismo , Pentosas , Glucosa/metabolismo
14.
Metab Eng ; 78: 72-83, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201565

RESUMEN

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Asunto(s)
Lignina , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lignina/metabolismo
15.
Nat Commun ; 14(1): 2461, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117207

RESUMEN

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.


Asunto(s)
Algoritmos , Metabolómica , Espectrometría de Masas/métodos , Metabolómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Movilidad Iónica
16.
Biotechnol Biofuels Bioprod ; 16(1): 53, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991437

RESUMEN

BACKGROUND: Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS: In this study, the 3-HP ß-alanine pathway consisting of aspartate decarboxylase, ß-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the ß-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional ß-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS: The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.

17.
bioRxiv ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993277

RESUMEN

There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity at a cell-type-specific level to better understand and predict the function of complex biological systems, such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverages due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (Microdroplet Processing in One pot for Trace Samples), the multiplexed isobaric labelling, and a nanoflow peptide fractionation approach. The integrated workflow allowed to maximize proteome coverage of laser-isolated tissue samples containing nanogram proteins. We demonstrated the deep spatial proteomics can quantify more than 5,000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 µm2) and reveal unique islet microenvironments.

18.
Metab Eng ; 76: 193-203, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796578

RESUMEN

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional ß-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Mutagénesis , Ácidos Grasos
19.
Metab Eng Commun ; 15: e00203, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36065328

RESUMEN

The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity.

20.
Nat Commun ; 13(1): 4925, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995792

RESUMEN

Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.


Asunto(s)
Pseudomonas putida , Xilosa , Fermentación , Glucosa/metabolismo , Ingeniería Metabólica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/análogos & derivados , Xilosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...