Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EMBO J ; 43(4): 484-506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177497

RESUMEN

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.


Asunto(s)
Bacillus subtilis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ribosomas/metabolismo , Péptidos/metabolismo
2.
Nucleic Acids Res ; 51(21): 11479-11503, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889040

RESUMEN

While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.


Asunto(s)
Ácidos Nucleicos , Nucleótidos , Nucleótidos/metabolismo , Bacterias/metabolismo , Células Procariotas/metabolismo , Genómica , Ácidos Nucleicos/metabolismo
3.
Cell Rep ; 42(9): 113100, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676773

RESUMEN

In ribosome-associated quality control (RQC), nascent polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ("Ala-tails") that function outside ribosomes to induce ubiquitylation by E3 ligases Pirh2 (p53-induced RING-H2 domain-containing) or CRL2 (Cullin-2 RING ligase2)-KLHDC10. Here, we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails and that structural predictions identify candidate Ala-tail-binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail-binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron-recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.


Asunto(s)
Proteínas Portadoras , Ubiquitina-Proteína Ligasas , Humanos , Alanina/metabolismo , Sitios de Unión , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Portadoras/metabolismo
4.
Cell ; 186(11): 2410-2424.e18, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37160116

RESUMEN

Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.


Asunto(s)
Bacterias , Bacteriófagos , Proteínas NLR , Animales , Humanos , Bacterias/genética , Bacterias/metabolismo , Bacterias/virología , Bacteriófagos/genética , Bacteriófagos/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Proteínas NLR/genética , Proteínas Bacterianas
5.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205381

RESUMEN

In Ribosome-associated Quality Control (RQC), nascent-polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ('Ala-tails') that function outside ribosomes to induce ubiquitylation by Pirh2 or CRL2-KLHDC10 E3 ligases. Here we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails, and structural predictions identify candidate Ala-tail binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.

6.
bioRxiv ; 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37205477

RESUMEN

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains and reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation by the ribosome quality control pathway. Notably, we see no evidence of mRNA cleavage by MutS2, nor does it promote ribosome rescue by tmRNA as SmrB cleavage does in E. coli. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in various bacteria.

7.
NAR Genom Bioinform ; 5(1): lqad029, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968430

RESUMEN

The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.

8.
Viruses ; 14(9)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36146784

RESUMEN

NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.


Asunto(s)
Adenosina Difosfato Ribosa , Virus , Adenosina Difosfato Ribosa/metabolismo , NAD/metabolismo , Proteoma , ARN , Virus/metabolismo
9.
Annu Rev Biomed Data Sci ; 5: 367-391, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35609893

RESUMEN

Biological replicators, from genes within a genome to whole organisms, are locked in conflicts. Comparative genomics has revealed a staggering diversity of molecular armaments and mechanisms regulating their deployment, collectively termed biological conflict systems. These encompass toxins used in inter- and intraspecific interactions, self/nonself discrimination, antiviral immune mechanisms, and counter-host effectors deployed by viruses and intragenomic selfish elements. These systems possess shared syntactical features in their organizational logic and a set of effectors targeting genetic information flow through the Central Dogma, certain membranes, and key molecules like NAD+. These principles can be exploited to discover new conflict systems through sensitive computational analyses. This has led to significant advances in our understanding of the biology of these systems and furnished new biotechnological reagents for genome editing, sequencing, and beyond. We discuss these advances using specific examples of toxins, restriction-modification, apoptosis, CRISPR/second messenger-regulated systems, and other enigmatic nucleic acid-targeting systems.


Asunto(s)
Genoma , Toxinas Biológicas , Evolución Biológica , Genómica , Toxinas Biológicas/genética
10.
Nature ; 603(7901): 503-508, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264790

RESUMEN

Ribosome rescue pathways recycle stalled ribosomes and target problematic mRNAs and aborted proteins for degradation1,2. In bacteria, it remains unclear how rescue pathways distinguish ribosomes stalled in the middle of a transcript from actively translating ribosomes3-6. Here, using a genetic screen in Escherichia coli, we discovered a new rescue factor that has endonuclease activity. SmrB cleaves mRNAs upstream of stalled ribosomes, allowing the ribosome rescue factor tmRNA (which acts on truncated mRNAs3) to rescue upstream ribosomes. SmrB is recruited to ribosomes and is activated by collisions. Cryo-electron microscopy structures of collided disomes from E. coli and Bacillus subtilis show distinct and conserved arrangements of individual ribosomes and the composite SmrB-binding site. These findings reveal the underlying mechanisms by which ribosome collisions trigger ribosome rescue in bacteria.


Asunto(s)
Escherichia coli , Ribosomas , Bacterias/genética , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo
11.
Elife ; 102021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061031

RESUMEN

Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.


Asunto(s)
Apoptosis , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Superfamilia de los Dominios de Muerte , Células Procariotas/metabolismo , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Bacterias/genética , Bacterias/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Evolución Molecular , Genómica , Interacciones Huésped-Patógeno , Viabilidad Microbiana , Filogenia , Células Procariotas/inmunología , Transducción de Señal , Simbiosis , Proteína de Dominio de Muerte Asociada a Receptor de TNF/genética , Proteína de Dominio de Muerte Asociada a Receptor de TNF/inmunología
12.
Cell Chem Biol ; 28(9): 1356-1365.e4, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-33784500

RESUMEN

RNA splicing, a highly conserved process in eukaryotic gene expression, is seen as a promising target for anticancer agents. Splicing is associated with other RNA processing steps, such as transcription and nuclear export; however, our understanding of the interaction between splicing and other RNA regulatory mechanisms remains incomplete. Moreover, the impact of chemical splicing inhibition on long non-coding RNAs (lncRNAs) has been poorly understood. Here, we demonstrate that spliceostatin A (SSA), a chemical splicing modulator that binds to the SF3B subcomplex of the U2 small nuclear ribonucleoprotein particle (snRNP), limits U1 snRNP availability in splicing, resulting in premature cleavage and polyadenylation of MALAT1, a nuclear lncRNA, as well as protein-coding mRNAs. Therefore, truncated transcripts are exported into the cytoplasm and translated, resulting in aberrant protein products. Our work demonstrates that active recycling of the splicing machinery maintains homeostasis of RNA processing beyond intron excision.


Asunto(s)
Fosfoproteínas/antagonistas & inhibidores , Piranos/farmacología , Factores de Empalme de ARN/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/antagonistas & inhibidores , Compuestos de Espiro/farmacología , Femenino , Células HeLa , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Poliadenilación/efectos de los fármacos , Piranos/química , Empalme del ARN/efectos de los fármacos , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Compuestos de Espiro/química , Células Tumorales Cultivadas
13.
Viruses ; 13(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466489

RESUMEN

Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host-virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Genoma Viral , Bacteriófagos/ultraestructura , Sistemas CRISPR-Cas , Genómica , Interacciones Microbiota-Huesped , Filogenia , Análisis de Componente Principal
14.
Cell Rep ; 33(12): 108527, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357439

RESUMEN

Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2', 3'-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5' tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair.


Asunto(s)
Operón/inmunología , ARN de Transferencia/metabolismo , ARN/metabolismo , Humanos
15.
Nucleic Acids Res ; 48(18): 10045-10075, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32894288

RESUMEN

ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfatasas , Evolución Molecular , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/clasificación , Adenosina Trifosfatasas/fisiología , Bacterias/enzimología , Eucariontes/enzimología , Nucleoproteínas/metabolismo
16.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32868406

RESUMEN

Nucleotide-activated effector deployment, prototyped by interferon-dependent immunity, is a common mechanistic theme shared by immune systems of several animals and prokaryotes. Prokaryotic versions include CRISPR-Cas with the CRISPR polymerase domain, their minimal variants, and systems with second messenger oligonucleotide or dinucleotide synthetase (SMODS). Cyclic or linear oligonucleotide signals in these systems help set a threshold for the activation of potentially deleterious downstream effectors in response to invader detection. We establish such a regulatory mechanism to be a more general principle of immune systems, which can also operate independently of such messengers. Using sensitive sequence analysis and comparative genomics, we identify 12 new prokaryotic immune systems, which we unify by this principle of threshold-dependent effector activation. These display regulatory mechanisms paralleling physiological signaling based on 3'-5' cyclic mononucleotides, NAD+-derived messengers, two- and one-component signaling that includes histidine kinase-based signaling, and proteolytic activation. Furthermore, these systems allowed the identification of multiple new sensory signal sensory components, such as a tetratricopeptide repeat (TPR) scaffold predicted to recognize NAD+-derived signals, unreported versions of the STING domain, prokaryotic YEATS domains, and a predicted nucleotide sensor related to receiver domains. We also identify previously unrecognized invader detection components and effector components, such as prokaryotic versions of the Wnt domain. Finally, we show that there have been multiple acquisitions of unidentified STING domains in eukaryotes, while the TPR scaffold was incorporated into the animal immunity/apoptosis signal-regulating kinase (ASK) signalosome.IMPORTANCE Both prokaryotic and eukaryotic immune systems face the dangers of premature activation of effectors and degradation of self-molecules in the absence of an invader. To mitigate this, they have evolved threshold-setting regulatory mechanisms for the triggering of effectors only upon the detection of a sufficiently strong invader signal. This work defines general templates for such regulation in effector-based immune systems. Using this, we identify several previously uncharacterized prokaryotic immune mechanisms that accomplish the regulation of downstream effector deployment by using nucleotide, NAD+-derived, two-component, and one-component signals paralleling physiological homeostasis. This study has also helped identify several previously unknown sensor and effector modules in these systems. Our findings also augment the growing evidence for the emergence of key animal immunity and chromatin regulatory components from prokaryotic progenitors.


Asunto(s)
Bacterias/genética , Bacterias/inmunología , Proteínas Bacterianas/inmunología , Eucariontes/inmunología , Secuencia de Aminoácidos , Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Eucariontes/genética , Genómica , Sistema Inmunológico , Nucleótidos/química , Nucleótidos/inmunología , Alineación de Secuencia
17.
Front Genet ; 11: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117448

RESUMEN

The origin of eukaryotes was marked by the emergence of several novel subcellular systems. One such is the calcium (Ca2+)-stores system of the endoplasmic reticulum, which profoundly influences diverse aspects of cellular function including signal transduction, motility, division, and biomineralization. We use comparative genomics and sensitive sequence and structure analyses to investigate the evolution of this system. Our findings reconstruct the core form of the Ca2+-stores system in the last eukaryotic common ancestor as having at least 15 proteins that constituted a basic system for facilitating both Ca2+ flux across endomembranes and Ca2+-dependent signaling. We present evidence that the key EF-hand Ca2+-binding components had their origins in a likely bacterial symbiont other than the mitochondrial progenitor, whereas the protein phosphatase subunit of the ancestral calcineurin complex was likely inherited from the asgard archaeal progenitor of the stem eukaryote. This further points to the potential origin of the eukaryotes in a Ca2+-rich biomineralized environment such as stromatolites. We further show that throughout eukaryotic evolution there were several acquisitions from bacteria of key components of the Ca2+-stores system, even though no prokaryotic lineage possesses a comparable system. Further, using quantitative measures derived from comparative genomics we show that there were several rounds of lineage-specific gene expansions, innovations of novel gene families, and gene losses correlated with biological innovation such as the biomineralized molluscan shells, coccolithophores, and animal motility. The burst of innovation of new genes in animals included the wolframin protein associated with Wolfram syndrome in humans. We show for the first time that it contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.

18.
Elife ; 92020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32101166

RESUMEN

Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.


Bacteria are the most numerous lifeforms on the planet. Most bacteria live as single cells that grow and multiply independently within larger communities of microbes. However, some bacterial cells assemble to form more complex structures where individual cells might perform distinct roles. Such bacteria are referred to as 'multicellular bacteria'. For example, cells of bacteria known as Streptomyces collectively form filaments that help the bacteria collect nutrients from their food sources, and aerial structures bearing reproductive spores. Bacteria in these filaments may come into contact with many other microbes in their surroundings including other bacteria within the same filament, other species of bacteria, and viruses. These contacts often lead to conflict, for example, if the microbes compete with each other for nutrients or if a virus tries to attack the bacteria. Bacteria have evolved immune systems that detect other microbes and use antibiotics, toxins and other defense mechanisms against them. Compared to single-celled bacteria, multicellular bacteria may be more vulnerable to threats from viruses because once a virus has overcome the defenses of one cell in the multicellular assembly, it may be easier for it to kill, or spread to the other cells. However, it is not clear how these systems evolved to deal with the unique problems of multicellular bacteria. Now, Kaur, Burroughs et al. have used computational approaches to search for new immune systems in diverse multicellular bacteria. The new classes of systems they found are each made of different molecular components, but all require a large input of energy to be activated. This activation barrier prevents the bacterial cells from deploying weapons unless the signal from the enemy microbe crosses a high enough threshold. Many tools used in molecular biology, and increasingly in medicine, have been derived from the immune systems of bacteria, such as the enzymes that cut or edit DNA. The findings of Kaur, Burroughs et al. may aid the development of new tools that specifically bind to viruses or other dangerous microbes, or inhibit their ability to interact with components in cells. The next step would be to perform experiments using some of the immune systems identified in this work.


Asunto(s)
Archaea/citología , Bacterias/citología , Nucleótidos/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Evolución Biológica , Sistemas CRISPR-Cas , Células Procariotas
19.
J Biol Chem ; 294(26): 10211-10235, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31092555

RESUMEN

A diverse collection of enzymes comprising the protocatechuate dioxygenases (PCADs) has been characterized in several extradiol aromatic compound degradation pathways. Structural studies have shown a relationship between PCADs and the more broadly-distributed, functionally enigmatic Memo domain linked to several human diseases. To better understand the evolution of this PCAD-Memo protein superfamily, we explored their structural and functional determinants to establish a unified evolutionary framework, identifying 15 clearly-delineable families, including a previously-underappreciated diversity in five Memo clade families. We place the superfamily's origin within the greater radiation of the nucleoside phosphorylase/hydrolase-peptide/amidohydrolase fold prior to the last universal common ancestor of all extant organisms. In addition to identifying active-site residues across the superfamily, we describe three distinct, structurally-variable regions emanating from the core scaffold often housing conserved residues specific to individual families. These were predicted to contribute to the active-site pocket, potentially in substrate specificity and allosteric regulation. We also identified several previously-undescribed conserved genome contexts, providing insight into potentially novel substrates in PCAD clade families. We extend known conserved contextual associations for the Memo clade beyond previously-described associations with the AMMECR1 domain and a radical S-adenosylmethionine family domain. These observations point to two distinct yet potentially overlapping contexts wherein the elusive molecular function of the Memo domain could be finally resolved, thereby linking it to nucleotide base and aliphatic isoprenoid modification. In total, this report throws light on the functions of large swaths of the experimentally-uncharacterized PCAD-Memo families.


Asunto(s)
Dioxigenasas/química , Dioxigenasas/metabolismo , Familia de Multigenes , S-Adenosilmetionina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Dioxigenasas/genética , Humanos , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato
20.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018531

RESUMEN

The evolution of release factors catalyzing the hydrolysis of the final peptidyl-tRNA bond and the release of the polypeptide from the ribosome has been a longstanding paradox. While the components of the translation apparatus are generally well-conserved across extant life, structurally unrelated release factor peptidyl hydrolases (RF-PHs) emerged in the stems of the bacterial and archaeo-eukaryotic lineages. We analyze the diversification of RF-PH domains within the broader evolutionary framework of the translation apparatus. Thus, we reconstruct the possible state of translation termination in the Last Universal Common Ancestor with possible tRNA-like terminators. Further, evolutionary trajectories of the several auxiliary release factors in ribosome quality control (RQC) and rescue pathways point to multiple independent solutions to this problem and frequent transfers between superkingdoms including the recently characterized ArfT, which is more widely distributed across life than previously appreciated. The eukaryotic RQC system was pieced together from components with disparate provenance, which include the long-sought-after Vms1/ANKZF1 RF-PH of bacterial origin. We also uncover an under-appreciated evolutionary driver of innovation in rescue pathways: effectors deployed in biological conflicts that target the ribosome. At least three rescue pathways (centered on the prfH/RFH, baeRF-1, and C12orf65 RF-PH domains), were likely innovated in response to such conflicts.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/genética , Ribosomas/genética , Secuencia de Aminoácidos , Animales , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Evolución Molecular , Humanos , Modelos Moleculares , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Filogenia , Biosíntesis de Proteínas , Dominios Proteicos , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA