RESUMEN
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
RESUMEN
Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.
Asunto(s)
Aorta , Macrófagos , Animales , Macrófagos/citología , Macrófagos/metabolismo , Aorta/citología , Ratones , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Diferenciación Celular , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Angiotensina II , Proliferación Celular , Células Madre/citología , Células Madre/metabolismo , Ratones Endogámicos C57BL , Femenino , Neovascularización Fisiológica , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Masculino , Hematopoyesis/fisiología , Tirosina Quinasa 3 Similar a fmsRESUMEN
BACKGROUND: Low-dose colchicine reduces the risk of cardiovascular events after myocardial infarction (MI). The purpose of this study was to assess the effect of colchicine post-MI on coronary plaque morphology in non-culprit segments by optical coherence tomography (OCT). METHODS AND RESULTS: COCOMO-ACS was a double-blind, placebo-controlled trial that randomized 64 patients (median age 61.5 years; 9.4% female) with acute non-ST-segment elevation MI to colchicine 0.5 mg daily or placebo for a median of 17.8 months in addition to guideline-recommended therapy. Participants underwent serial OCT imaging within a matched segment of non-culprit coronary artery which contained at least one lipid-rich plaque causing ≥20% stenosis. The primary outcome was the change in minimum fibrous cap thickness (FCT) in non-culprit segments from baseline to final visit. Of those randomized, 57 (29 placebo, 28 colchicine) had evaluable imaging at baseline and follow-up. Overall, colchicine had no effect on relative (placebo +48.0±35.1% vs. colchicine +62.4±38.1%, P=0.18) or absolute changes in minimum FCT (+29.2±20.9 µm vs. +37.2±21.3 µm, P=0.18), or change in maximum lipid arc (-38.8±32.2° vs. -54.8±46.9°, P=0.18) throughout the imaged non-culprit segment. However, in patients assigned colchicine, cap rupture was less frequent (placebo 27.6% vs. colchicine 3.6%, P=0.03). In post-hoc analysis of 43 participants who had been followed for at least 16 months, minimum FCT increased to a greater extent in the colchicine group (placebo +38.7±25.4% vs. colchicine +64.7±34.1%, P=0.005). CONCLUSION: In this study, OCT failed to detect an effect of colchicine on the minimum FCT or maximum lipid arc of plaques in non-culprit segments post-MI. The post-hoc observation that minimum FCT increased to a greater extent with colchicine after more prolonged treatment suggests longer-term studies may be required to detect the effect of anti-inflammatory therapies on plaque morphology by OCT. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Identifier, ACTRN12618000809235, registered on the 11th of May 2018.
RESUMEN
Circadian disruption causes glucose intolerance, cardiac fibrosis, and adipocyte dysfunction in sand rats (Psammomys obesus). Exercise intervention can improve glucose metabolism, insulin sensitivity, adipose tissue function and protect against inflammation. We investigated the influence of exercise on male P. obesus exposed to a short photoperiod (5 h light:19 h dark) and high-energy diet. Exercise reduced glucose intolerance. Exercise reduced cardiac expression of inflammatory marker Ccl2 and Bax:Bcl2 apoptosis ratio. Exercise increased heart:body weight ratio and hypertrophy marker Myh7:Myh6, yet reduced Gata4 expression. No phenotypic changes were observed in perivascular fibrosis and myocyte area. Exercise reduced visceral adipose expression of inflammatory transcription factor Rela, adipogenesis marker Ppard and browning marker Ppargc1a, but visceral adipocyte size was unaffected. Conversely, exercise reduced subcutaneous adipocyte size but did not affect any molecular mediators. Exercise increased ZT7 Bmal1 and Per2 in the suprachiasmatic nucleus and subcutaneous Per2. Our study provides new molecular insights and histological assessments on the effect of exercise on cardiac inflammation, adipose tissue dysfunction and circadian gene expression in P. obesus exposed to short photoperiod and high-energy diet. These findings have implications for the protective benefits of exercise for shift workers in order to reduce the risk of diabetes and cardiovascular disease.
Asunto(s)
Tejido Adiposo , Gerbillinae , Intolerancia a la Glucosa , Fotoperiodo , Condicionamiento Físico Animal , Animales , Masculino , Intolerancia a la Glucosa/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Inflamación/patología , Dieta Alta en Grasa/efectos adversos , Miocardio/metabolismo , Miocardio/patologíaRESUMEN
Circadian disruption increases the development of cardiovascular disease and diabetes. We found that circadian disruption causes glucose intolerance, cardiac fibrosis and adipocyte tissue dysfunction in male sand rats, Psammomys obesus. Whether these effects occur in female P. obesus is unknown. Male and female P. obesus were fed a high energy diet and exposed to a neutral (12 light:12 dark, control) or short (5 light:19 dark, circadian disruption) photoperiod for 20 weeks. Circadian disruption impaired glucose tolerance in males but not females. It also increased cardiac perivascular fibrosis and cardiac expression of inflammatory marker Ccl2 in males, with no effect in females. Females had reduced proapoptotic Bax mRNA and cardiac Myh7:Myh6 hypertrophy ratio. Cardiac protection in females occurred despite reductions in the clock gene Per2. Circadian disruption increased adipocyte hypertrophy in both males and females. This was concomitant with a reduction in adipocyte differentiation markers Pparg and Cebpa in males and females, respectively. Circadian disruption increased visceral adipose expression of inflammatory mediators Ccl2, Tgfb1 and Cd68 and reduced browning marker Ucp1 in males. However, these changes were not observed in females. Collectively, our study show that sex differentially influences the effects of circadian disruption on glucose tolerance, cardiac function and adipose tissue dysfunction.
Asunto(s)
Adipocitos , Fibrosis , Gerbillinae , Intolerancia a la Glucosa , Animales , Femenino , Adipocitos/metabolismo , Adipocitos/patología , Masculino , Intolerancia a la Glucosa/metabolismo , Miocardio/metabolismo , Miocardio/patología , Ritmo CircadianoRESUMEN
While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising OâCâO repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.
Asunto(s)
Biopelículas , Materiales Biocompatibles Revestidos , Glicerol , Polímeros , Glicerol/química , Glicerol/farmacología , Animales , Polímeros/química , Polímeros/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Biopelículas/efectos de los fármacos , Humanos , Incrustaciones Biológicas/prevención & control , Ratones , Fibrinolíticos/química , Fibrinolíticos/farmacología , Adhesividad Plaquetaria/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Trombosis/prevención & control , StentsRESUMEN
Despite the emergence of novel diagnostic, pharmacological, interventional, and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle (NP)-based platforms encompass diverse imaging, delivery, and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular levels. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active NP uptake. In this review, we discuss an array of inorganic, carbon-based, and lipid-based NPs that provide magnetic, radiographic, and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of NPs that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation, and defective efferocytosis. We also provide examples of NP systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic NPs. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in NP design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.
Asunto(s)
Aterosclerosis , Macrófagos , Nanopartículas Multifuncionales , Placa Aterosclerótica , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/diagnóstico , Aterosclerosis/prevención & control , Animales , Macrófagos/metabolismo , Nanopartículas Multifuncionales/metabolismo , Sistema de Administración de Fármacos con Nanopartículas , Nanomedicina Teranóstica , Valor Predictivo de las PruebasRESUMEN
Atherosclerosis is the build-up of fatty plaques within blood vessel walls, which can occlude the vessels and cause strokes or heart attacks. It gives rise to both structural and biomolecular changes in the vessel walls. Current single-modality imaging techniques each measure one of these two aspects but fail to provide insight into the combined changes. To address this, our team has developed a dual-modality imaging system which combines optical coherence tomography (OCT) and fluorescence imaging that is optimized for a porphyrin lipid nanoparticle that emits fluorescence and targets atherosclerotic plaques. Atherosclerosis-prone apolipoprotein (Apo)e-/- mice were fed a high cholesterol diet to promote plaque development in descending thoracic aortas. Following infusion of porphyrin lipid nanoparticles in atherosclerotic mice, the fiber-optic probe was inserted into the aorta for imaging, and we were able to robustly detect a porphyrin lipid-specific fluorescence signal that was not present in saline-infused control mice. We observed that the nanoparticle fluorescence colocalized in areas of CD68+ macrophages. These results demonstrate that our system can detect the fluorescence from nanoparticles, providing complementary biological information to the structural information obtained from simultaneously acquired OCT.
Asunto(s)
Nanopartículas , Placa Aterosclerótica , Porfirinas , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Animales , Placa Aterosclerótica/diagnóstico por imagen , Nanopartículas/química , Ratones , Porfirinas/química , Imagen Óptica/métodos , Modelos Animales de Enfermedad , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Aterosclerosis/patología , Macrófagos/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/químicaRESUMEN
Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study sought to determine whether these effects could be translated in vivo and to determine the molecular mechanisms involved. CRISPR/Cas9-generated Trim2-/- mice that underwent a periarterial collar model of inflammation-induced angiogenesis exhibited significantly less adventitial macrophage infiltration relative to wildtype (WT) littermates, concomitant with decreased mRNA expression of macrophage marker Cd68 and reduced adventitial proliferating neovessels. Mechanistically, TRIM2 knockdown in endothelial cells in vitro attenuated inflammation-driven induction of critical angiogenic mediators, including nuclear HIF-1α, and curbed the phosphorylation of downstream effector eNOS. Conversely, in a hindlimb ischemia model of hypoxia-mediated angiogenesis, there were no differences in blood flow reperfusion to the ischemic hindlimbs of Trim2-/- and WT mice despite a decrease in proliferating neovessels and arterioles. TRIM2 knockdown in vitro attenuated hypoxia-driven induction of nuclear HIF-1α but had no further downstream effects on other angiogenic proteins. Our study has implications for understanding the role of TRIM2 in the regulation of angiogenesis in both pathophysiological contexts.
Asunto(s)
Angiogénesis , Células Endoteliales , Animales , Ratones , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Isquemia/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genéticaRESUMEN
Pulmonary hypertension (PH) consists of a heterogenous group of diseases that culminate in increased pulmonary arterial pressure and right ventricular (RV) dysfunction. We sought to investigate the role of FXYD1, a small membrane protein that modulates Na+-K+-ATPase function, in the pathophysiology of PH. We mined online transcriptome databases to assess FXYD1 expression in PH. We characterized the effects of FXYD1 knockout (KO) in mice on right and left ventricular (RV and LV) function using echocardiography and measured invasive hemodynamic measurements under normal conditions and after treatment with bleomycin sulfate or chronic hypoxia to induce PH. Using immunohistochemistry, immunoblotting, and functional assays, we examined the effects of FXYD1 KO on pulmonary microvasculature and RV and LV structure and assessed signaling via endothelial nitric oxide synthase (eNOS) and inflammatory pathways. FXYD1 lung expression tended to be lower in samples from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with controls, supporting a potential pathophysiological role. FXYD1 KO mice displayed characteristics of PH including significant increases in pulmonary arterial pressure, increased muscularization of small pulmonary arterioles, and impaired RV systolic function, in addition to LV systolic dysfunction. However, when PH was stimulated with standard models of lung injury-induced PH, there was no exacerbation of disease in FXYD1 KO mice. Both the lungs and left ventricles exhibited elevated nitrosative stress and inflammatory milieu. The absence of FXYD1 in mice results in LV inflammation and cardiopulmonary redox signaling changes that predispose to pathophysiological features of PH, suggesting FXYD1 may be protective.NEW & NOTEWORTHY This is the first study to show that deficiency of the FXYD1 protein is associated with pulmonary hypertension. FXYD1 expression is lower in the lungs of people with idiopathic pulmonary artery hypertension. FXYD1 deficiency results in both left and right ventricular functional impairment. Finally, FXYD1 may endogenously protect the heart from oxidative and inflammatory injury.
Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Proteínas de la Membrana , Fosfoproteínas , Disfunción Ventricular Derecha , Animales , Humanos , Ratones , Ventrículos Cardíacos , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Oxidación-Reducción , Arteria Pulmonar , Función Ventricular Derecha , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismoRESUMEN
Peripheral artery disease (PAD) is caused by blocked arteries due to atherosclerosis and/or thrombosis which reduce blood flow to the lower limbs. It results in major morbidity, including ischemic limb, claudication, and amputation, with patients also suffering a heightened risk of heart attack, stroke, and death. Recent studies suggest women have a higher prevalence of PAD than men, and with worse outcomes after intervention. In addition to a potential unconscious bias faced by women with PAD in the health system, with underdiagnosis, and lower rates of guideline-based therapy, fundamental biological differences between men and women may be important. In this review, we highlight sexual dimorphisms in endothelial cell functions and how they may impact PAD pathophysiology in women. Understanding sex-specific mechanisms in PAD is essential for the development of new therapies and personalized care for patients with PAD.
Asunto(s)
Aterosclerosis , Enfermedad Arterial Periférica , Masculino , Humanos , Femenino , Enfermedad Arterial Periférica/terapia , Extremidad Inferior/irrigación sanguínea , Claudicación Intermitente , Células Endoteliales , Factores de RiesgoRESUMEN
Colchicine is a broad-acting anti-inflammatory agent that has attracted interest for repurposing in atherosclerotic cardiovascular disease. Here, we studied its ability at a human equivalent dose of 0.5 mg/day to modify plaque formation and composition in murine atherosclerosis and investigated its actions on macrophage responses to atherogenic stimuli in vitro. In atherosclerosis induced by high-cholesterol diet, Apoe-/- mice treated with colchicine had 50% reduction in aortic oil Red O+ plaque area compared to saline control (p = .001) and lower oil Red O+ staining of aortic sinus lesions (p = .03). In vitro, addition of 10 nM colchicine inhibited foam cell formation from murine and human macrophages after treatment with oxidized LDL (ox-LDL). Mechanistically, colchicine downregulated glycosylation and surface expression of the ox-LDL uptake receptor, CD36, and reduced CD36+ staining in aortic sinus plaques. It also decreased macrophage uptake of cholesterol crystals, resulting in lower intracellular lysosomal activity, inhibition of the NLRP3 inflammasome, and reduced secretion of IL-1ß and IL-18. Colchicine's anti-atherosclerotic actions were accentuated in a mouse model of unstable plaque induced by carotid artery tandem stenosis surgery, where it decreased lesion size by 48% (p = .01), reduced lipid (p = .006) and necrotic core area (p = .007), increased collagen content and cap-to-necrotic core ratio (p = .05), and attenuated plaque neutrophil extracellular traps (p < .001). At low dose, colchicine's effects were not accompanied by the evidence of microtubule depolymerization. Together, these results show that colchicine exerts anti-atherosclerotic and plaque-stabilizing effects at low dose by inhibiting foam cell formation and cholesterol crystal-induced inflammation. This provides a new framework to support its repurposing for atherosclerotic cardiovascular disease.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Estenosis Carotídea , Humanos , Animales , Ratones , Células Espumosas , Colchicina , ColesterolRESUMEN
Peripheral artery disease (PAD) is caused by occluded or narrowed arteries that reduce blood flow to the lower limbs. The treatment focuses on lifestyle changes, management of modifiable risk factors and vascular surgery. In this review we focus on how Endothelial Cell (EC) dysfunction contributes to PAD pathophysiology and describe the largely untapped potential of correcting endothelial dysfunction. Moreover, we describe current treatments and clinical trials which improve EC dysfunction and offer insights into where future research efforts could be made. Endothelial dysfunction could represent a target for PAD therapy.
RESUMEN
Despite significant advances in interventional and therapeutic approaches, cardiovascular disease (CVD) remains the leading cause of death and mortality. To lower this health burden, cardiovascular discovery scientists need to play an integral part in the solution. Successful clinical translation is achieved when built upon a strong foundational understanding of the disease mechanisms involved. Changes in the Australian funding landscape, to place greater emphasis on translation, however, have increased job insecurity for discovery science researchers and especially early-mid career researchers. To highlight the importance of discovery science in cardiovascular research, this review compiles six science stories in which fundamental discoveries, often involving Australian researchers, has led to or is advancing to clinical translation. These stories demonstrate the importance of the role of discovery scientists and the need for their work to be prioritised now and in the future. Australia needs to keep discovery scientists supported and fully engaged within the broader cardiovascular research ecosystem so they can help realise the next game-changing therapy or diagnostic approach that diminishes the burden of CVD on society.
Asunto(s)
Enfermedades Cardiovasculares , Ecosistema , Australia/epidemiología , Enfermedades Cardiovasculares/terapia , Humanos , InvestigadoresRESUMEN
Macrophage-derived nitric oxide (NO) plays a critical role in atherosclerosis and presents as a potential biomarker. We assessed the uptake, distribution, and NO detection capacity of an irreversible, ruthenium-based, fluorescent NO sensor (Ru-NO) in macrophages, plasma, and atherosclerotic plaques. In vitro, incubation of Ru-NO with human THP1 monocytes and THP1-PMA macrophages caused robust uptake, detected by Ru-NO fluorescence using mass-cytometry, confocal microscopy, and flow cytometry. THP1-PMA macrophages had higher Ru-NO uptake (+13%, p < 0.05) than THP1 monocytes with increased Ru-NO fluorescence following lipopolysaccharide stimulation (+14%, p < 0.05). In mice, intraperitoneal infusion of Ru-NO found Ru-NO uptake was greater in peritoneal CD11b+F4/80+ macrophages (+61%, p < 0.01) than CD11b+F4/80− monocytes. Infusion of Ru-NO into Apoe−/− mice fed high-cholesterol diet (HCD) revealed Ru-NO fluorescence co-localised with atherosclerotic plaque macrophages. When Ru-NO was added ex vivo to aortic cell suspensions from Apoe−/− mice, macrophage-specific uptake of Ru-NO was demonstrated. Ru-NO was added ex vivo to tail-vein blood samples collected monthly from Apoe−/− mice on HCD or chow. The plasma Ru-NO fluorescence signal was higher in HCD than chow-fed mice after 12 weeks (37.9%, p < 0.05). Finally, Ru-NO was added to plasma from patients (N = 50) following clinically-indicated angiograms. There was lower Ru-NO fluorescence from plasma from patients with myocardial infarction (−30.7%, p < 0.01) than those with stable coronary atherosclerosis. In conclusion, Ru-NO is internalised by macrophages in vitro, ex vivo, and in vivo, can be detected in atherosclerotic plaques, and generates measurable changes in fluorescence in murine and human plasma. Ru-NO displays promising utility as a sensor of atherosclerosis.
RESUMEN
Background: Exercise is associated with a less atherogenic lipid profile; however, there is limited research on the effect of exercise on atherosclerotic plaque composition and markers of plaque stability. Methods: A total of 110 apolipoprotein (apo)E -/- mice were placed on a chow diet and randomly assigned to control or exercise for a period of 10 weeks, commencing either at 12 weeks of age (the early-stage atherosclerosis, EA group) or at 40 weeks of age (the late-stage atherosclerosis, LA group). At the end of the exercise period, blood was assayed for lipids. Histologic analysis of the aortic sinus was undertaken to assess plaque size and composition that includes macrophage content, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase-2 (MMP-2), and tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and 2). Results: A total of 103 mice (38 EA, 65 LA) completed the protocol. In the EA group, exercise reduced plasma total cholesterol (TC) (-16%), free cholesterol (-13%), triglyceride (TG) (-35%), and phospholipid (-27%) levels, when compared to sedentary control mice (p < 0.01). In the EA group, exercise also significantly reduced plaque stenosis (-25%, p < 0.01), and there were higher levels of elastin (3-fold increase, p < 0.0001) and collagen (11-fold increase, p < 0.0001) in plaques, compared to control mice. There was an increase in plaque MMP-2 content in the exercise group (13% increase, p < 0.05) but no significant difference in macrophage or MCP-1 content. In the LA group, exercise reduced plaque stenosis (-18%, p < 0.05), but there was no significant difference in plaque composition. There was no difference in macrophage, MCP-1, or MMP-2 content in the LA groups. TIMP-1 was lower with exercise in both the EA and LA groups (-59%, p < 0.01 and -51%, p < 0.01 respectively); however, there was no difference in TIMP-2 levels. Conclusion: A 10-week exercise period reduces atherosclerotic plaque stenosis when commenced at both early- and late-stage atherosclerosis. Intervening earlier with exercise had a greater beneficial effect on lipids and plaque composition than when starting exercise at a later disease stage.
RESUMEN
Peripheral arterial disease (PAD) is characterised by accelerated arterial calcification and impairment in angiogenesis. Studies implicate vascular calcification as a contributor to PAD, but the mechanisms remain unclear. We aimed to determine the effect of calcification on ischaemia-driven angiogenesis. Human coronary artery endothelial cells (ECs) were treated with calcification medium (CM: CaCl2 2.7 mM, Na2PO4 2.0 mM) for 24 h and exposed to normoxia (5% CO2) or hypoxia (1.2% O2; 5% CO2 balanced with N2). In normoxia, CM significantly inhibited tubule formation and migration and upregulated calcification markers of ALP, BMP2, and Runx2. CM elevated levels of calcification-protective gene OPG, demonstrating a compensatory mechanism by ECs. CM failed to induce pro-angiogenic regulators VEGFA and HIF-1α in hypoxia and further suppressed the phosphorylation of endothelial nitric oxide synthase (eNOS) that is essential for vascular function. In vivo, osteoprotegerin-deficient mice (OPG-/-), a calcification model, were subjected to hind-limb ischaemia (HLI) surgery. OPG-/- mice displayed elevated serum alkaline phosphatase (ALP) activity compared to wild-type controls. OPG-/- mice experienced striking reductions in blood-flow reperfusion in both 8-week-old and 6-month-old mice post-HLI. This coincided with significant impairment in tissue ischaemia and reduced limb function as assessed by clinical scoring (Tarlov). This study demonstrated for the first time that a pro-calcific environment is detrimental to ischaemia-driven angiogenesis. The degree of calcification in patients with PAD can often be a limiting factor with the use of standard therapies. These highly novel findings require further studies for full elucidation of the mechanisms involved and have implications for the development of therapies to suppress calcification in PAD.
Asunto(s)
Enfermedad Arterial Periférica , Calcificación Vascular , Animales , Dióxido de Carbono , Células Endoteliales , Humanos , Hipoxia , Isquemia , Ratones , Neovascularización PatológicaRESUMEN
AIMS: Although overweight and obesity are associated with increased risk of atrial fibrillation (AF), the underlying mechanisms are not well characterised. Recent data suggest that this link may be partly due to abnormal adipose tissue-derived cytokines or adipokines. However, this relationship is not well clarified. To evaluate the association between adipokines and AF in a systematic review and meta-analysis. DATA SYNTHESIS: PubMed, Embase, and Web of Science Core Collection were searched from inception through 1st March 2021. Studies were included if they reported any adipokine and AF, with their quality assessed using the Newcastle-Ottawa scale. Data were independently abstracted, with unadjusted and multivariable adjusted estimates pooled in a random-effects meta-analysis. Data are presented for overall prevalent or incident AF and AF subtypes (paroxysmal, persistent, or non-paroxysmal AF). A total of 34 studies, with 31,479 patients, were included. The following adipokines were significantly associated with AF in the pooled univariate data - apelin (risk ratio for prevalent AF: 0.05 [0.00-0.50], p = 0.01; recurrent AF: 0.21 [0.11-0.42], p < 0.01) and resistin (incident AF: 2.05 [1.02-4.1], p = 0.04; prevalent AF: 2.62 [1.78-3.85], p < 0.01). Pooled analysis of multivariable adjusted effect size estimates showed adiponectin as the sole independent predictor of AF incidence (1.14 [1.02-1.27], p = 0.02). Moreover, adiponectin was associated with non-paroxysmal AF (persistent AF: 1.45 [1.08-1.94, p = 0.01; non-paroxysmal versus paroxysmal AF: 3.14 [1.87-5.27, p < 0.01). CONCLUSIONS: Adipokines, principally adiponectin, apelin, and resistin, are associated with the risk of atrial fibrillation. However, the association is not seen after multivariate adjustment, likely reflecting the lack of statistical power. Future research should investigate these relationships in larger prospective cohorts and how they can refine AF monitoring strategies. PROSPERO ID: CRD42020208879.
Asunto(s)
Fibrilación Atrial , Resistina , Adipoquinas , Adiponectina , Apelina , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Humanos , Estudios ProspectivosRESUMEN
Multimodal microendoscopes enable co-located structural and molecular measurements in vivo, thus providing useful insights into the pathological changes associated with disease. However, different optical imaging modalities often have conflicting optical requirements for optimal lens design. For example, a high numerical aperture (NA) lens is needed to realize high-sensitivity fluorescence measurements. In contrast, optical coherence tomography (OCT) demands a low NA to achieve a large depth of focus. These competing requirements present a significant challenge in the design and fabrication of miniaturized imaging probes that are capable of supporting high-quality multiple modalities simultaneously. An optical design is demonstrated which uses two-photon 3D printing to create a miniaturized lens that is simultaneously optimized for these conflicting imaging modalities. The lens-in-lens design contains distinct but connected optical surfaces that separately address the needs of both fluorescence and OCT imaging within a lens of 330 µm diameter. This design shows an improvement in fluorescence sensitivity of >10x in contrast to more conventional fiber-optic design approaches. This lens-in-lens is then integrated into an intravascular catheter probe with a diameter of 520 µm. The first simultaneous intravascular OCT and fluorescence imaging of a mouse artery in vivo is reported.