Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Commun Biol ; 4(1): 59, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420383

RESUMEN

The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.


Asunto(s)
Señalización del Calcio , Disfunción Cognitiva/genética , Epilepsia Refleja/genética , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Aprendizaje por Asociación , Trastorno por Déficit de Atención con Hiperactividad/genética , Hipocampo/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Memoria Espacial
3.
Neuron ; 104(4): 680-692.e9, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31604597

RESUMEN

Excitatory neurotransmission and its activity-dependent plasticity are largely determined by AMPA-receptors (AMPARs), ion channel complexes whose cell physiology is encoded by their interactome. Here, we delineate the assembly of AMPARs in the endoplasmic reticulum (ER) of native neurons as multi-state production line controlled by distinct interactome constituents: ABHD6 together with porcupine stabilizes pore-forming GluA monomers, and the intellectual-disability-related FRRS1l-CPT1c complexes promote GluA oligomerization and co-assembly of GluA tetramers with cornichon and transmembrane AMPA-regulatory proteins (TARP) to render receptor channels ready for ER exit. Disruption of the assembly line by FRRS1l deletion largely reduces AMPARs in the plasma membrane, impairs synapse formation, and abolishes activity-dependent synaptic plasticity, while FRRS1l overexpression has the opposite effect. As a consequence, FRSS1l knockout mice display severe deficits in learning tasks and behavior. Our results provide mechanistic insight into the stepwise biogenesis of AMPARs in native ER membranes and establish FRRS1l as a powerful regulator of synaptic signaling and plasticity.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Animales , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/metabolismo
4.
PLoS One ; 14(3): e0211571, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30840676

RESUMEN

Operant conditioning is a crucial tool in neuroscience research for probing brain function. While molecular, anatomical and even physiological techniques have seen radical increases in throughput, efficiency, and reproducibility in recent years, behavioural tools have somewhat lagged behind. Here we present a fully automated, high-throughput system for self-initiated conditioning of up to 25 group-housed, radio-frequency identification (RFID) tagged mice over periods of several months and >106 trials. We validate this "AutonoMouse" system in a series of olfactory behavioural tasks and show that acquired data is comparable to previous semi-manual approaches. Furthermore, we use AutonoMouse to systematically probe the impact of graded olfactory bulb lesions on olfactory behaviour, demonstrating that while odour discrimination in general is robust to even most extensive disruptions, small olfactory bulb lesions already impair odour detection. Discrimination learning of similar mixtures as well as learning speed are in turn reliably impacted by medium lesion sizes. The modular nature and open-source design of AutonoMouse should allow for similar robust and systematic assessments across neuroscience research areas.


Asunto(s)
Condicionamiento Operante/fisiología , Aprendizaje Discriminativo/fisiología , Bulbo Olfatorio/fisiología , Olfato/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Odorantes , Reproducibilidad de los Resultados
5.
Front Mol Neurosci ; 11: 305, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214395

RESUMEN

Based on pharmacological studies, corticotropin-releasing hormone (CRH) and its receptors play a leading role in the inhibition of the hypothalamic-pituitary-gonadal (HPG) axis during acute stress. To further study the effects of CRH receptor signaling on the HPG axis, we generated and/or employed male mice lacking CRH receptor type 1 (CRHR1) or type 2 (CRHR2) in gonadotropin-releasing hormone neurons, GABAergic neurons, or in all central neurons and glia. The deletion of CRHRs revealed a preserved decrease of plasma luteinizing hormone (LH) in response to either psychophysical or immunological stress. However, under basal conditions, central infusion of CRH into mice lacking CRHR1 in all central neurons and glia, or application of CRH to pituitary cultures from mice lacking CRHR2, failed to suppress LH release, unlike in controls. Our results, taken together with those of the earlier pharmacological studies, suggest that inhibition of the male HPG axis during acute stress is mediated by other factors along with CRH, and that CRH suppresses the HPG axis at the central and pituitary levels via CRHR1 and CRHR2, respectively.

6.
Front Mol Neurosci ; 11: 199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988555

RESUMEN

The GluA1 subunit of the L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) plays a crucial, but highly selective, role in cognitive function. Here we analyzed AMPAR expression, AMPAR distribution and spatial learning in mice (Gria1R/R ), expressing the "trafficking compromised" GluA1(Q600R) point mutation. Our analysis revealed somatic accumulation and reduction of GluA1(Q600R) and GluA2, but only slightly reduced CA1 synaptic localization in hippocampi of adult Gria1R/R mice. These immunohistological changes were accompanied by a strong reduction of somatic AMPAR currents in CA1, and a reduction of plasticity (short-term and long-term potentiation, STP and LTP, respectively) in the CA1 subfield following tetanic and theta-burst stimulation. Nevertheless, spatial reference memory acquisition in the Morris water-maze and on an appetitive Y-maze task was unaffected in Gria1R/R mice. In contrast, spatial working/short-term memory during both spontaneous and rewarded alternation tasks was dramatically impaired. These findings identify the GluA1(Q600R) mutation as a loss of function mutation that provides independent evidence for the selective role of GluA1 in the expression of short-term memory.

7.
Front Mol Neurosci ; 10: 214, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725178

RESUMEN

Spatial working memory (SWM) and the classical, tetanus-induced long-term potentiation (LTP) at hippocampal CA3/CA1 synapses are dependent on L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) containing GluA1 subunits as demonstrated by knockout mice lacking GluA1. In GluA1 knockout mice LTP and SWM deficits could be partially recovered by transgenic re-installation of full-length GluA1 in principle forebrain neurons. Here we partially restored hippocampal LTP in GluA1-deficient mice by forebrain-specific depletion of the GluA2 gene, by the activation of a hypomorphic GluA2(Q) allele and by transgenic expression of PDZ-site truncated GFP-GluA1(TG). In none of these three mouse lines, the partial LTP recovery improved the SWM performance of GluA1-deficient mice suggesting a specific function of intact GluA1/2 receptors and the GluA1 intracellular carboxyl-terminus in SWM and its associated behavior.

8.
Nat Neurosci ; 15(8): 1153-9, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22797694

RESUMEN

Hippocampal NMDA receptors (NMDARs) and NMDAR-dependent synaptic plasticity are widely considered crucial substrates of long-term spatial memory, although their precise role remains uncertain. Here we show that Grin1(ΔDGCA1) mice, lacking GluN1 and hence NMDARs in all dentate gyrus and dorsal CA1 principal cells, acquired the spatial reference memory water maze task as well as controls, despite impairments on the spatial reference memory radial maze task. When we ran a spatial discrimination water maze task using two visually identical beacons, Grin1(ΔDGCA1) mice were impaired at using spatial information to inhibit selecting the decoy beacon, despite knowing the platform's actual spatial location. This failure could suffice to impair radial maze performance despite spatial memory itself being normal. Thus, these hippocampal NMDARs are not essential for encoding or storing long-term, associative spatial memories. Instead, we demonstrate an important function of the hippocampus in using spatial knowledge to select between alternative responses that arise from competing or overlapping memories.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/deficiencia , Animales , Proteínas Portadoras/genética , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Ratones , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato , Percepción Espacial/fisiología
9.
Eur J Neurosci ; 26(1): 155-70, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17614946

RESUMEN

In the rat brain, neuropeptide Y (NPY) Y(1) and Y(5) receptors are coexpressed in various forebrain regions where they mediate several NPY-activated functions, including feeding behaviour, anxiety, neuronal excitability and hormone secretion. We studied the distribution pattern and cellular colocalization of the Y(1) and the Y(5) receptor gene expression in the mouse brain by using transgenic mice with genomically integrated BAC clones, where the coding regions of the Y(1) and Y(5) receptor genes were replaced by Venus and the synthetic transcription factor itTA reporter genes, respectively (Tg(Y5RitTA/Y1RVenus) mice). Analysis of Venus fluorescence and itTA-mediated activation of Cre recombinase revealed copy number-dependent expression levels, between the lines, but similar expression patterns. In three transgenic lines the BAC encoded Y(5) receptor promoter induced strong Cre expression in the olfactory system, cerebral cortex, hippocampus and basal ganglia. Weaker expression was found in most of the hypothalamic nuclei of line 25, the highest-expressing transgenic line. Activation of Cre was itTA-dependent and could be regulated by doxycycline. The Y(1) receptor promoter-induced Venus fluorescence was intense, widely present through the brain and colocalized with Cre immunostaining in neurons of distinct brain regions, including the cerebral cortex, basolateral amygdala, dentate gyrus and paraventricular nucleus. These data provide a detailed and comparative mapping of Y(1) and Y(5) receptor promoter activity within cells of the mouse brain. The Tg(Y5RitTA/Y1RVenus)-transgenic mice generated here also represent a genetic tool for conditional mutagenesis via the Cre lox system, particularly of genes involved in feeding behaviour, neuronal excitability and hormone secretion.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Receptores de Neuropéptido Y/genética , Animales , ADN/biosíntesis , ADN/genética , Doxiciclina/toxicidad , Femenino , Genes Reporteros/genética , Genotipo , Inmunohistoquímica , Luciferasas/genética , Ratones , Ratones Transgénicos , Microscopía Confocal , Plásmidos/genética , Embarazo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
J Neurosci ; 26(33): 8428-40, 2006 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16914668

RESUMEN

We demonstrate the fundamental importance of glutamate receptor B (GluR-B) containing AMPA receptors in hippocampal function by analyzing mice with conditional GluR-B deficiency in postnatal forebrain principal neurons (GluR-B(deltaFb)). These mice are as adults sufficiently robust to permit comparative cellular, physiological, and behavioral studies. GluR-B loss induced moderate long-term changes in the hippocampus of GluR-B(deltaFb) mice. Parvalbumin-expressing interneurons in the dentate gyrus and the pyramidal cells in CA3 were decreased in number, and neurogenesis in the subgranular zone was diminished. Excitatory synaptic CA3-to-CA1 transmission was reduced, although synaptic excitability, as quantified by the lowered threshold for population spike initiation, was increased compared with control mice. These changes did not alter CA3-to-CA1 long-term potentiation (LTP), which in magnitude was similar to LTP in control mice. The altered hippocampal circuitry, however, affected spatial learning in GluR-B(deltaFb) mice. The primary source for the observed changes is most likely the AMPA receptor-mediated Ca2+ signaling that appears after GluR-B depletion, because we observed similar alterations in GluR-B(QFb) mice in which the expression of Ca2+-permeable AMPA receptors in principal neurons was induced by postnatal activation of a Q/R-site editing-deficient GluR-B allele.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Prosencéfalo/metabolismo , Receptores AMPA/fisiología , Percepción Espacial/fisiología , Animales , Calcio/metabolismo , División Celular , Giro Dentado/citología , Giro Dentado/metabolismo , Conducta Exploratoria , Silenciador del Gen , Hipocampo/citología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Receptores AMPA/deficiencia , Receptores AMPA/genética , Receptores AMPA/metabolismo , Transmisión Sináptica
11.
Mol Endocrinol ; 20(1): 219-31, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16099814

RESUMEN

The roles of ionotropic glutamate receptors in mammalian reproduction are unknown. We therefore generated mice lacking a major subtype of (S)-alpha-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA) receptors or all N-methyl-d-aspartate (NMDA) receptors in GnRH neurons and other mainly limbic system neurons, primarily in hypothalamic and septal areas. Male mice without NMDA receptors in these neurons were not impaired in breeding and exhibited similar GnRH secretion as control littermates. However, male mice lacking GluR-B containing AMPA receptors in these neurons were poor breeders and severely impaired in reproductive behaviors such as aggression and mounting. Testis and sperm morphology, testis weight, and serum testosterone levels, as well as GnRH secretion, were unchanged. Contact with female cage bedding failed to elicit male sexual behavior in these mice, unlike in control male littermates. Their female counterparts had unchanged ovarian morphology, had bred successfully, and had normal litter sizes but exhibited pronounced impairments in maternal behaviors such as pup retrieval and maternal aggression. Our results suggest that NMDA receptors and GluR-B containing AMPA receptors are not essential for fertility, but that GluR-B containing AMPA receptors are essential for male and female reproduction-related behaviors, perhaps by mediating responses to pheromones or odorants.


Asunto(s)
Fertilidad/fisiología , Neuronas/metabolismo , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Conducta Sexual Animal/fisiología , Animales , Peso Corporal , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/citología , Masculino , Conducta Materna/fisiología , Ratones , Ratones Transgénicos , Tamaño de los Órganos , Ovario/citología , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Tabique del Cerebro/citología , Espermatozoides/citología , Espermatozoides/fisiología , Testículo/anatomía & histología , Testículo/citología , Testosterona/sangre
12.
PLoS Biol ; 3(11): e354, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16216087

RESUMEN

Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic") among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.


Asunto(s)
Receptores AMPA/metabolismo , Olfato , Animales , Southern Blotting , Calcio/metabolismo , Línea Celular , Corteza Cerebral/metabolismo , Variación Genética , Heterocigoto , Hipocampo/metabolismo , Immunoblotting , Aprendizaje , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Modelos Estadísticos , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Fenotipo , Prosencéfalo/metabolismo , Células Piramidales/metabolismo , Receptores de Glutamato/metabolismo , Reproducibilidad de los Resultados , Transmisión Sináptica , Factores de Tiempo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...