Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4698, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542023

RESUMEN

Reducing the sample size can profoundly impact properties of bulk metallic glasses. Here, we systematically reduce the length scale of Au and Pt-based metallic glasses and study their vitrification behavior and atomic mobility. For this purpose, we exploit fast scanning calorimetry (FSC) allowing to study glassy dynamics in an exceptionally wide range of cooling rates and frequencies. We show that the main α relaxation process remains size independent and bulk-like. In contrast, we observe pronounced size dependent vitrification kinetics in micrometer-sized glasses, which is more evident for the smallest samples and at low cooling rates, resulting in more than 40 K decrease in fictive temperature, Tf, with respect to the bulk. We discuss the deep implications on how this outcome can be used to convey glasses to low energy states.

2.
ACS Appl Mater Interfaces ; 15(5): 6697-6707, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36695713

RESUMEN

Metallic glasses or amorphous alloys, with their excellent chemical stability, disordered atomic arrangement, and ability for thermoplastic nanostructuring, show promising performance toward a range of electrocatalytic reactions in proton-exchange membrane fuel cells. However, there are knowledge gaps and a distinct lack of understanding of the role of amorphous alloy chemistry in determining their catalytic activity. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the hydrogen oxidation reaction (HOR) activity of a systematic series of Pt42.5-xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The HOR activity and electrochemical active surface area as a function of composition were in the form of volcano plots, with a peak around equal proportion of Pt and Pd. The lower relative electron work function and higher binding energy of the Pt core level explain the reduced charge-transfer resistance and improved electrocatalytic activity due to weakened chemisorption of protons in the mid-range composition. Density functional theory calculations show the lower free energy change and higher hydrogen adsorption density for these Pt42.5-xPdxCu27Ni9.5P21 BMGs, suggesting a synergistic effect from the presence of both noble metals, Pt and Pd.

3.
Materials (Basel) ; 15(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36363265

RESUMEN

Ultrasonic metal welding (UMW) enables joining in the solid state at relative low temperatures with short cycle times. This technique is of particular interest for joining metallic glasses to each other or to other materials, because crystallization of the amorphous structure can be prevented due to the low thermal loading and the rapidity of the process. In this work, UMW is applied to join one 1 mm thick sheet of a commercial wrought aluminum alloy (AA5754) and one 0.4 mm thick strip of a commercial Zr-based bulk metallic glass (AMZ4). The introduced heat of the welding process is detected with thermocouples and thermal imaging. To investigate the strength of the joint and the influence on the microstructure, mechanical tensile tests are carried out in combination with scanning electron microscopy and differential scanning calorimetry. The results show that ultrasonic metal welding is a suitable technique to join amorphous bulk metallic glasses to crystalline aluminum alloys. The metallic glass component retains its amorphous structure in the joint, and the joint strength is higher than the strength of the Al sheet. These findings will help to develop future applications of BMG-based multi-material components, including medical tools.

4.
Sci Rep ; 12(1): 17133, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224269

RESUMEN

The compositional dependence and influence of relaxation state on the deformation behavior of a Pt-Pd-based bulk metallic glasses model system was investigated, where platinum is systematically replaced by topologically equivalent palladium atoms. The hardness and modulus increased with rising Pd content as well as by annealing below the glass transition temperature. Decreasing strain-rate sensitivity and increasing serration length are observed in nano indentation with increase in Pd content as well as thermal relaxation. Micro-pillar compression for alloys with different Pt/Pd ratios validated the greater tendency for shear localization and brittle behavior of the Pd-rich alloys. Based on total scattering experiments with synchrotron X-ray radiation, a correlation between the increase in stiffer 3-atom cluster connections and reduction in strain-rate sensitivity, as a measure of ductility, with Pd content and thermal history is suggested.

5.
Materials (Basel) ; 15(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35591452

RESUMEN

Generating polymer-metal structures by means of additive manufacturing offers huge potential for customized, sustainable and lightweight solutions. However, challenges exist, primarily with regard to reliability and reproducibility of the additively generated joints. In this study, the polymers ABS, PETG and PLA, which are common in material extrusion, were joined to grit-blasted aluminum substrates. Temperature dependence of polymer melt rheology, wetting and tensile single-lap-shear strength were examined in order to obtain appropriate thermal processing conditions. Joints with high adhesive strength in the fresh state were aged for up to 100 days in two different moderate environments. For the given conditions, PETG was most suitable for generating structural joints. Contrary to PETG, ABS-aluminum joints in the fresh state as well as PLA-aluminum joints in the aged state did not meet the demands of a structural joint. For the considered polymers and processing conditions, this study implies that the suitability of a polymer and a thermal processing condition to form a polymer-aluminum joint by material extrusion can be evaluated based on the polymer's rheological properties. Moreover, wetting experiments improved estimation of the resulting tensile single-lap-shear strength.

6.
J Phys Condens Matter ; 33(47)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464948

RESUMEN

An entropy driven liquid-liquid transition (LLT) from a fragile (less ordered) to a strong (highly ordered) liquid occurs in the phase during undercooling. In this work, we show that this ordering transition as well as the applied shear rate affect the onset of crystallization. By recording simultaneously melt viscosity and temperature profiles, we quantitatively determine the shift in the upper part of the time-temperature-transformation diagram of Vit1 to shorter times with increasing shear rate. This acceleration in nucleation rate can be explained by the classical nucleation theory of crystals only if we take into consideration the effect of both shear flow and equilibrium viscosity. A critical assessment of the results concludes that shearing must first trigger the nucleation of the strong liquid from the fragile liquid and that the crystallization proceeds in a second step from the strong liquid. The fragile-to-strong transition decreases the configurational entropy of the liquid leading to a smaller interfacial energy between liquid and crystal, thus reducing the activation barrier for crystallization.

7.
J Phys Condens Matter ; 33(43)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34405822

RESUMEN

The Ni self-diffusion in glass forming Pd40Ni40S20, Pd37Ni37S26and Pd31Ni42S27melts was probed by incoherent, quasielastic neutron scattering over a temperature range between 773 and 1023 K. The Ni self-diffusion coefficients are on a 10-10 m2 s-1-10-9 m2 s-1scale and barely change with composition. Each composition exhibits an Arrhenius-type temperature dependence of the Ni self-diffusion coefficients, which results in activation energies ranging fromEA= 348 ± 16 meV for Pd40Ni40S20toEA= 387 ± 6 meV for Pd37Ni37S26. The structural relaxation shows a stretched exponential behavior even far above the liquidus temperatures. In addition, the viscosity of the Pd37Ni37S26melt was measured under reduced gravity conditions. The diffusion calculated from the viscosity reveals a significant deviation from the measured Ni self-diffusion by a factor between 4 and 8. This may indicate a dynamic decoupling between the atoms within the Pd-Ni-S equilibrium melts.

8.
Sci Adv ; 6(17): eaay1454, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494629

RESUMEN

Understanding how glasses form, the so-called vitrification, remains a major challenge in materials science. Here, we study vitrification kinetics, in terms of the limiting fictive temperature, and atomic mobility related to the α-relaxation of an Au-based bulk metallic glass former by fast scanning calorimetry. We show that the time scale of the α-relaxation exhibits super-Arrhenius temperature dependence typical of fragile liquids. In contrast, vitrification kinetics displays milder temperature dependence at moderate undercooling, and thereby, vitrification takes place at temperatures lower than those associated to the α-relaxation. This finding challenges the paradigmatic view based on a one-to-one correlation between vitrification, leading to the glass transition, and the α-relaxation. We provide arguments that at moderate to deep undercooling, other atomic motions, which are not involved in the α-relaxation and that originate from the heterogeneous dynamics in metallic glasses, contribute to vitrification. Implications from the viewpoint of glasses fundamental properties are discussed.

9.
J Phys Condens Matter ; 32(32): 324004, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32235055

RESUMEN

Temperature modulated DSC is used to study the fragility of three different bulk metallic glass forming liquids. Through applying various modulation frequencies, the dynamic glass transition shifts in temperature, allowing to determine the temperature dependence of the average relaxation time for each system. The resulting fragilities are compared with fragility investigations in literature obtained using thermo-mechanical analysis and the heating rate dependence of the calorimetric glass transition. Different methods to compare the data are evaluated and discussed.

10.
J Phys Condens Matter ; 32(26): 264003, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32126527

RESUMEN

New bulk glass-forming alloy compositions, exceeding a critical casting thickness of 1 mm, are developed in the (quasi-ternary) (Ti,Zr)-(Ni,Cu)-S system. The ternary eutectic composition Ti65.5Ni22.5Cu12 is stepwise modified through additions of S (0-8 at%) and Zr (0-22.5 at%) at the expense of Ni and Ti, respectively. By increasing the plate thickness of the casted samples from 500 µm to 1.25 mm, the primary precipitating phases are identified which is for the best glass-formers (e.g. Ti58Zr7.5Ni18.5Cu12S4) an icosahedral phase. In calorimetric experiments, several exothermic crystallization events are observed upon heating glassy samples. The first exothermic event, obscuring the glass transition, is attributed to the formation of the icosahedral phase. As the icosahedral phase forms upon heating and cooling for the best glass-formers, the origin of the increased glass-forming ability might be attributed to a pronounced icosahedral short-range order in the liquid state, impeding the formation of the stable crystalline phases.

11.
J Phys Condens Matter ; 32(32): 324001, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32203946

RESUMEN

The isothermal crystallization times and critical cooling rates of the liquid phase are determined for the two bulk metallic glass forming alloys Au49Ag5.5Pd2.3Cu26.9Si16.3 and Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3 by using fast differential scanning calorimetry, covering the whole timescale of the crystallization event of the metallic melt. In the case of Au49Ag5.5Pd2.3Cu26.9Si16.3, a typical crystallization nose was observed, whereas for the Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3, a more complex crystallization behavior with two distinct crystallization noses was found. Even for the complex crystallization behavior of the Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3 alloy it is shown that the minimal isothermal nose time [Formula: see text] does allow for a quantification of the macroscopic critical thickness. It is discussed in contrast to the critical cooling rate, which is found to allow less exact calculations of the critical thickness and thus does not correlate well with the critical cooling rate from macroscopic experiments. Additionally the crystallization data of Au49Ag5.5Pd2.3Cu26.9Si16.3 was modeled using classical nucleation theory with the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, enabling a determination of the interfacial energy.

12.
J Phys Condens Matter ; 32(24): 244002, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32106093

RESUMEN

Amorphous metals display an extraordinary mechanical strength and elasticity and can at the same time be formed like thermoplastic polymers. These properties make them the ideal material for industrial applications where complex parts have to withstand high mechanical loads. In this work, the thermoplastic formability of amorphous metals is evaluated and discussed in connection to their thermophysical properties. Formability is experimentally assessed in thermoplastic deformation experiments with a constant heating rate, and in isothermal experiments. The results are compared to the theoretical formability values calculated from the thermophysical material properties and found to perfectly coincide. The formability of amorphous alloys can be reliably calculated based on a viscosity measurement in the supercooled liquid region. In isothermal experiments, the maximum formability is obtained at the highest temperatures where crystallization can still be avoided.

13.
Rev Sci Instrum ; 89(11): 113904, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30501283

RESUMEN

A high-temperature Couette rotating cylinder rheometer has been developed for shear viscosity investigations of metallic glass forming liquids under precisely controlled flow and environmental conditions. These materials generally exhibit viscosities in the range of 10-2 to 10-1 Pa s above their liquidus temperature. While knowledge of the viscosity is crucial for estimating the glass forming ability and processing capabilities of these liquids, accurate rheological measurements are challenging due to their vulnerability to oxidation and contamination from the crucible and processing environment. Thus, the present device was constructed to measure the shear viscosities of these reactive melts in an inert atmosphere using shear cells manufactured from isostatically pressed graphite. A custom suite of LabVIEW programs provides all the necessary data acquisition tools and controls for the motor, inductive generator, sample temperature, and torque sensor. The setup includes a proportional-integral-derivative controller that allows for both isothermal and continuous heating/cooling experiments from room temperature up to 1400 K. The system is calibrated using NIST reference oils at room temperature. To demonstrate the functionality of the apparatus at high temperatures, the viscosity of the metallic glass forming alloy Zr59.3Cu28.8Al10.4Nb1.5 (AMZ4) was measured above the melting point and was found to be in excellent agreement with previously reported reference values from levitation-based measurement techniques.

14.
Phys Rev Lett ; 115(17): 175701, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26551125

RESUMEN

We use coherent x rays to probe the aging dynamics of a metallic glass directly on the atomic level. Contrary to the common assumption of a steady slowing down of the dynamics usually observed in macroscopic studies, we show that the structural relaxation processes underlying aging in this metallic glass are intermittent and highly heterogeneous at the atomic scale. Moreover, physical aging is triggered by cooperative atomic rearrangements, driven by the relaxation of internal stresses. The rich diversity of this behavior reflects a complex energy landscape, giving rise to a unique type of glassy-state dynamics.

15.
Nat Commun ; 4: 2083, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23817404

RESUMEN

Polymorphic phase transitions are common in crystalline solids. Recent studies suggest that phase transitions may also exist between two liquid forms with different entropy and structure. Such a liquid-liquid transition has been investigated in various substances including water, Al2O3-Y2O3 and network glass formers. However, the nature of liquid-liquid transition is debated due to experimental difficulties in avoiding crystallization and/or measuring at high temperatures/pressures. Here we report the thermodynamic and structural evidence of a temperature-induced weak first-order liquid-liquid transition in a bulk metallic glass-forming system Zr(41.2)Ti(13.8)Cu(12.5)Ni10Be(22.5) characterized by non- (or weak) directional bonds. Our experimental results suggest that the local structural changes during the transition induce the drastic viscosity changes without a detectable density anomaly. These changes are correlated with a heat capacity maximum in the liquid. Our findings support the hypothesis that the 'strong' kinetics (low fragility) of a liquid may arise from an underlying lambda transition above its glass transition.

16.
J Biomed Mater Res A ; 92(2): 754-65, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19274713

RESUMEN

In-stent restenosis becomes increasingly prevalent as a difficult-to-treat disease. An alternative therapeutic strategy is enhancing endothelialization on metallic stent surfaces. This study attempted to modify surface chemistry and topography of commercial pure titanium (cp-Ti) by different sol-gel derived oxide coatings (TiO(2), SiO(2), SiO(2)/TiO(2), and Nb(2)O(5)) to improve endothelialization. The physiochemical properties of the modified surfaces were characterized by ellipsometry, atomic force microscope, and sessile-drop method. The cell adhesion/proliferation quantity, cell adhesion morphology, and focal adhesion protein expression were evaluated with human pulmonary microvascular endothelial cell line. The thickness of oxide coatings approximates to 100 nm; significantly rougher nanoporous structure was found in the TiO(2) and Nb(2)O(5) coatings than that of cp-Ti. SiO(2) coating possesses the highest surface energy (75.1 mJ/m(2)) and the lowest was for cp-Ti (45.7 mJ/m(2)). TiO(2) coating showed significantly higher endothelial cell adhesion rate than others; TiO(2), Nb(2)O(5), and TiO(2)/SiO(2) coatings exhibited higher endothelial proliferation in 3-day assays than noncoated Ti. In hemocompatible test, they also showed good hemocompatibility. These results offer the insight into that certain oxide coatings on titanium could significantly improve endothelial cell adhesion and proliferation especially in early period, which will favor reaching the endothelialization rapidly and suitable as matrix for "endothelial seeding" stent.


Asunto(s)
Materiales Biocompatibles , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/fisiología , Titanio , Actinas/metabolismo , Materiales Biocompatibles/química , Recuento de Células , Forma de la Célula , Citoesqueleto/metabolismo , Células Endoteliales/ultraestructura , Oclusión de Injerto Vascular/prevención & control , Prueba de Histocompatibilidad , Humanos , Microscopía de Fuerza Atómica , Microscopía Confocal , Nanotecnología , Stents , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...